Skip to main content
Log in

First-principle study on the surface atomic relaxation properties of sphalerite

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The surface properties of sphalerite (ZnS) were theoretically investigated using first principle calculations based on the density functional theory (DFT). DFT results indicate that both the (110) and the (220) surfaces of sphalerite undergo surface atom relaxation after geometry optimization, which results in a considerable distortion of the surface region. In the normal direction, i.e., perpendicular to the surface, S atoms in the first surface layer move outward from the bulk (d 1), whereas Zn atoms move toward the bulk (d 2), forming an S-enriched surface. The values of these displacements are 0.003 nm for d 1 and 0.021 nm for d 2 on the (110) surface, and 0.002 nm for d 1 and 0.011 nm for d 2 on the (220) surface. Such a relaxation process is visually interpreted through the qualitative analysis of molecular mechanics. X-ray photoelectron spectroscopic (XPS) analysis provides the evidence for the S-enriched surface. A polysulphide (S 2− n ) surface layer with a binding energy of 163.21 eV is formed on the surface of sphalerite after its grinding under ambient atmosphere. This S-enriched surface and the S 2− n surface layer have important influence on the flotation properties of sphalerite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Tong, J. He, F. Rao, S.Q. Liu, and Q.H. Zhou, Experimental study on activation of high iron-bearing marmatite, Min. Metall. Eng., 26(2006), No.4, p.19.

    CAS  Google Scholar 

  2. M.E. Holuszko, J.P. Franzidis, E.V. Manlapig, M.A. Hampton, B.C. Donose, and A.V. Nguyen, The effect of surface treatment and slime coatings on ZnS hydrophobicity, Miner. Eng., 21(2008), No.12–14, p.958.

    Article  CAS  Google Scholar 

  3. B.J. Shean and J.J. Cilliers, A review of froth flotation control, Int. J. Miner. Process., 100(2011), No.3–4, p.57.

    Article  CAS  Google Scholar 

  4. D. Fornasiero and J. Ralston, Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 78(2006), No.4, p.231.

    Article  CAS  Google Scholar 

  5. M.R. Stanton, P.A. Gemery-Hill, W.C. Shanks III, and C.D. Taylor, Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0–4.0, Appl. Geochem., 23(2008), No.2, p.136.

    Article  CAS  Google Scholar 

  6. D.J. Vaughan, U. Becker, and K. Wright, Sulphide mineral surfaces: theory and experiment, Int. J. Miner. Process., 51(1997), No.1, p.1.

    Article  CAS  Google Scholar 

  7. S.L. Harmer, L.V. Goncharova, R. Kolarova, W.N. Lennard, M.A. Muñoz-Márquez, I.V. Mitchell, and H.W. Nesbitt, Surface structure of sphalerite studied by medium energy ion scattering and XPS, Surf. Sci., 601(2007), No.2, p.352.

    Article  CAS  Google Scholar 

  8. J.H. Chen, Y. Chen, and Y.Q. Li, Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles, Trans. Nonferrous Met. Soc. China, 20(2010), No.3, p.502.

    Article  CAS  Google Scholar 

  9. P. Baláž, Z. Bastl, J. Briančin, I. Ebert, and J. Lipka, Surface and bulk properties of mechanically activated zinc sulphide, J. Mater. Sci., 27(1992), No.3, p.653.

    Article  Google Scholar 

  10. J.H. Chen and Y. Chen, A first-principle study of the effect of vacancy defects and impurities on the adsorption of O2 on sphalerite surfaces, Colloids Surf. A, 363(2010), No.1-3, p.56.

    Article  CAS  Google Scholar 

  11. S.L. Harmer, A. Mierczynska-Vasilev, D.A. Beattie, and J.G. Shapter, The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite, Miner. Eng., 21(2008), No.12–14, p.1005.

    Article  CAS  Google Scholar 

  12. J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45(1992), No.23, p.13244.

    Article  Google Scholar 

  13. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques for ab initio total energy calculation: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64(1992), No.4, p.1045.

    Article  CAS  Google Scholar 

  14. H.T. Gao, Y.Y. Liu, C.H. Ding, D.M. Dai, and G.J. Liu, Synthesis, characterization, and theoretical study of N, S-codoped nano-TiO2 with photocatalytic activities, Int. J. Miner. Metall. Mater., 18(2011), No.5, p.606.

    Article  CAS  Google Scholar 

  15. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No.18, p.3865.

    Article  CAS  Google Scholar 

  16. W.H. Luo, W.Y. Hu, and S.F. Xiao, Size effect on the thermodynamic properties of silver nanoparticles, J. Phys. Chem. C, 112(2008), No.7, p.2359.

    Article  CAS  Google Scholar 

  17. C.B. Duke, A. Paton, and A. Kahn, The atomic geometries of GaP(110) and ZnS(110) revisited: a structural ambiguity and its resolution, J. Vac. Sci. Technol. A, 2(1984), No.2, p.515.

    Article  CAS  Google Scholar 

  18. D.J. Simpson, T. Bredow, A.P. Chandra, G.P. Cavallaro, and A.R. Gerson, The effect of iron and copper impurities on the wettability of sphalerite (110) surface, J. Comput. Chem., 32(2011), No.9, p.2022.

    Article  CAS  Google Scholar 

  19. H.M. Steele, K. Wright, and I.H. Hillier, A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species, Phys. Chem. Miner., 30(2003), No.2, p.69.

    Article  CAS  Google Scholar 

  20. T. Lan and F.Y. Xu, The law and mechanism of relaxation and reconstruction of the crystal surfaces, Chin. J. At. Mol. Phys., 12(1995), No.4, p.438.

    CAS  Google Scholar 

  21. A. Boulton, D. Fornasiero, and J. Ralston, Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS, Int. J. Miner. Process., 70(2003), No.1–4, p.205.

    Article  CAS  Google Scholar 

  22. C.G. Weisener, R.S.C. Smart, and A.R. Gerson, A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron, Int. J. Miner. Process., 74(2004), No.1–4, p.239.

    Article  CAS  Google Scholar 

  23. T.N. Khmeleva, W.M. Skinner, and D.A. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 76(2005), No.1–2, p.43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ming Wen.

Additional information

This work was financially supported by the Key Program of the National Natural Science Foundation of China (No.u0837602) and the Analysis Testing Foundation of Kunming University of Science and Technology (No.2010-303).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wen, Sm., Xian, Yj. et al. First-principle study on the surface atomic relaxation properties of sphalerite. Int J Miner Metall Mater 19, 775–781 (2012). https://doi.org/10.1007/s12613-012-0627-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0627-x

Keywords

Navigation