Skip to main content

Advertisement

Log in

Genomic Testing to Guide Local Therapy Decisions in Hormone Receptor-Positive Breast Cancer

  • Review
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To explore how genomic testing has changed local therapy decision-making, specifically surgical timing and opportunities for de-escalation of radiation therapy in hormone receptor-positive, HER2-negative (HR + HER2-) breast cancer.

Recent Findings

Randomized trials have shown that genomic tests can be used to guide systemic therapy decision in HR + HER2- breast cancer, with a significant proportion of patients not receiving benefit from chemotherapy. Emerging data suggests that the use of genomic testing on core needle biopsy can also predict response to preoperative therapy and guide choices between neoadjuvant treatments when preoperative therapy is needed, especially in women with limited nodal disease that may not otherwise require chemotherapy. Further, genomic tests can stratify which patients are at the lowest risk for locoregional recurrence and may be candidates for omission of radiation therapy.

Summary

Genomic testing can guide surgical timing and opportunities for selecting the lowest-risk patients for omission of radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  2. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, Costantino JP, Geyer CE Jr, Wickerham DL, Wolmark N. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726–34.

    Article  CAS  PubMed  Google Scholar 

  3. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, Ravdin P, Bugarini R, Baehner FL, Davidson NE, Sledge GW, Winer EP, Hudis C, Ingle JN, Perez EA, Pritchard KI, Shepherd L, Gralow JR, Yoshizawa C, Allred DC, Osborne CK, Hayes DF. Breast Cancer Intergroup of North America. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;1:55–65.

    Article  Google Scholar 

  4. Sparano JA, Paik S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol. 2008;26(5):721–8.

    Article  PubMed  Google Scholar 

  5. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  6. Bueno-de-Mesquita JM, Linn SC, Keijzer R, Wesseling J, Nuyten DS, van Krimpen C, Meijers C, de Graaf PW, Bos MM, Hart AA, Rutgers EJ, Peterse JL, Halfwerk H, de Groot R, Pronk A, Floore AN, Glas AM, Van’t Veer LJ, van de Vijver MJ. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat. 2009;117(3):483–95.

    Article  CAS  PubMed  Google Scholar 

  7. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, Glas AM, Bogaerts J, Cardoso F, Piccart-Gebhart MJ, Rutgers ET, Van’t Veer LJ. TRANSBIG Consortium. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116(2):295–302.

    Article  CAS  PubMed  Google Scholar 

  8. Vliek SB, Hilbers FS, Jager A, Retèl VP, Bueno de Mesquita JM, Drukker CA, Veltkamp SC, Zeillemaker AM, Rutgers EJ, van Tinteren H, van Harten WH, van’t Veer LJ, van de Vijver MJ, Linn SC. Ten-year follow-up of the observational RASTER study, prospective evaluation of the 70-gene signature in ER-positive, HER2-negative, node-negative, early breast cancer. Eur J Cancer. 2022;175:169–79.

    Article  CAS  PubMed  Google Scholar 

  9. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, Ferree S, Storhoff J, Schaper C, Cuzick J. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783–90.

    Article  PubMed  Google Scholar 

  10. Sestak I, Cuzick J, Dowsett M, Lopez-Knowles E, Filipits M, Dubsky P, Cowens JW, Ferree S, Schaper C, Fesl C, Gnant M. Prediction of late distant recurrence after 5 years of endocrine treatment: a combined analysis of patients from the Austrian breast and colorectal cancer study group 8 and arimidex, tamoxifen alone or in combination randomized trials using the PAM50 risk of recurrence score. J Clin Oncol. 2015;33(8):916–22.

    Article  CAS  PubMed  Google Scholar 

  11. Sestak I, Martín M, Dubsky P, Kronenwett R, Rojo F, Cuzick J, Filipits M, Ruiz A, Gradishar W, Soliman H, Schwartzberg L, Buus R, Hlauschek D, Rodríguez-Lescure A, Gnant M. Prediction of chemotherapy benefit by EndoPredict in patients with breast cancer who received adjuvant endocrine therapy plus chemotherapy or endocrine therapy alone. Breast Cancer Res Treat. 2019;176(2):377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buus R, Szijgyarto Z, Schuster EF, Xiao H, Haynes BP, Sestak I, Cuzick J, Paré L, Seguí E, Chic N, Prat A, Dowsett M, Cheang MCU. Development and validation for research assessment of Oncotype DX® Breast Recurrence Score, EndoPredict® and Prosigna®. NPJ Breast Cancer. 2021;7(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soliman H, Flake DD 2nd, Magliocco A, Robson M, Schwartzberg L, Sharma P, Brown K, Wehnelt S, Kronenwett R, Gutin A, Lancaster J, Cuzick J, Gradishar W. Predicting expected absolute chemotherapy treatment benefit in women with early-stage breast cancer using EndoPredict, an integrated 12-gene clinicomolecular assay. JCO Precis Oncol. 2019;3:PO.18.00361. https://doi.org/10.1200/PO.18.00361.

  14. Andre F, Ismaila N, Allison KH, Barlow WE, Collyar DE, Damodaran S, Henry NL, Jhaveri K, Kalinsky K, Kuderer NM, Litvak A, Mayer EL, Pusztai L, Raab R, Wolff AC, Stearns V. Biomarkers for adjuvant endocrine and chemotherapy in early-stage breast cancer: ASCO guideline update. J Clin Oncol. 2022;40(16):1816–37.

    Article  CAS  PubMed  Google Scholar 

  15. National Comprehensive Cancer Nework. NCCN Clinical practice guidelines in oncology: breast cancer v4.2023. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf

  16. Woodward WA, Barlow WE, Jagsi R, Buchholz TA, Shak S, Baehner F, Whelan TJ, Davidson NE, Ingle JN, King TA, Ravdin PM, Osborne CK, Tripathy D, Livingston RB, Gralow JR, Hortobagyi GN, Hayes DF, Albain KS. Association between 21-gene assay recurrence score and locoregional recurrence rates in patients with node-positive breast cancer. JAMA Oncol. 2020;6(4):505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. • Davey MG, Cleere EF, O’Donnell JP, Gaisor S, Lowery AJ, Kerin MJ. Value of the 21-gene expression assay in predicting locoregional recurrence rates in estrogen receptor-positive breast cancer: a systematic review and network meta-analysis. Breast Cancer Res Treat. 2022;193(3):535–44. This meta-analysis examines the role of the Oncotype DX RS in predicting locoregional events, suggesting that high RS is associated with increased LRR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drukker CA, Elias SG, Nijenhuis MV, Wesseling J, Bartelink H, Elkhuizen P, Fowble B, Whitworth PW, Patel RR, de Snoo FA, van’t Veer LJ, Beitsch PD, Rutgers EJ. Gene expression profiling to predict the risk of locoregional recurrence in breast cancer: a pooled analysis. Breast Cancer Res Treat. 2014;148(3):599–613.

    Article  CAS  PubMed  Google Scholar 

  19. Turashvili G, Chou JF, Brogi E, Morrow M, Dickler M, Norton L, Hudis C, Wen HY. 21-Gene recurrence score and locoregional recurrence in lymph node-negative, estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2017;166(1):69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer CE Jr, Dees EC, Goetz MP, Olson JA Jr, Lively T, Badve SS, Saphner TJ, Wagner LI, Whelan TJ, Ellis MJ, Paik S, Wood WC, Ravdin PM, Keane MM, Gomez Moreno HL, Reddy PS, Goggins TF, Mayer IA, Brufsky AM, Toppmeyer DL, Kaklamani VG, Berenberg JL, Abrams J, Sledge GW Jr. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N Engl J Med. 2018;379(2):111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Kalinsky K, Barlow WE, Gralow JR, Meric-Bernstam F, Albain KS, Hayes DF, Lin NU, Perez EA, Goldstein LJ, Chia SKL, Dhesy-Thind S, Rastogi P, Alba E, Delaloge S, Martin M, Kelly CM, Ruiz-Borrego M, Gil-Gil M, Arce-Salinas CH, Brain EGC, Lee ES, Pierga JY, Bermejo B, Ramos-Vazquez M, Jung KH, Ferrero JM, Schott AF, Shak S, Sharma P, Lew DL, Miao J, Tripathy D, Pusztai L, Hortobagyi GN. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. N Engl J Med. 2021;385(25):2336–47. RxPONDER trial randomizing women with HR+HER2- breast cancer with 1-3 positive lymph nodes and an Oncotype DX RS <25 to CET vs ET; showing that in postmenopausal women there is no benefit to chemotherapy over ET in these patients. This is a practice changing study which has significantly changed systemic therapy indications in these patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ. TRANSBIG Consortium. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98(17):1183–92.

    Article  CAS  PubMed  Google Scholar 

  23. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, Causeret S, DeLorenzi M, Glas AM, Golfinopoulos V, Goulioti T, Knox S, Matos E, Meulemans B, Neijenhuis PA, Nitz U, Passalacqua R, Ravdin P, Rubio IT, Saghatchian M, Smilde TJ, Sotiriou C, Stork L, Straehle C, Thomas G, Thompson AM, van der Hoeven JM, Vuylsteke P, Bernards R, Tryfonidis K, Rutgers E, Piccart M. MINDACT Investigators. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375(8):717–29.

    Article  CAS  PubMed  Google Scholar 

  24. •• Piccart M, van Veer LJ, Poncet C, Lopes Cardozo JMN, Delaloge S, Pierga JY, Vuylsteke P, Brain E, Vrijaldenhoven S, Neijenhuis PA, Causeret S, Smilde TJ, Viale G, Glas AM, Delorenzi M, Sotiriou C, Rubio IT, Kümmel S, Zoppoli G, Thompson AM, Matos E, Zaman K, Hilbers F, Fumagalli D, Ravdin P, Knox S, Tryfonidis K, Peric A, Meulemans B, Bogaerts J, Cardoso F. Rutgers EJT 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol. 2021;22(4):476–88. Updated analysis and age-based analysis of the MINDACT trial looking at chemotherapy in patients with discordant genomic and clinical risk, finding that in women age >50 with up to 3 positive nodes there does not appear to be a benefit to chemotherapy in these women. This mirrors the results of the RxPONDER trial with a different genomic test.

    Article  CAS  PubMed  Google Scholar 

  25. Gluz O, Nitz UA, Christgen M, Kates RE, Shak S, Clemens M, Kraemer S, Aktas B, Kuemmel S, Reimer T, Kusche M, Heyl V, Lorenz-Salehi F, Just M, Hofmann D, Degenhardt T, Liedtke C, Svedman C, Wuerstlein R, Kreipe HH, Harbeck N. West German Study Group Phase III PlanB Trial: first prospective outcome data for the 21-gene recurrence score assay and concordance of prognostic markers by central and local pathology assessment. J Clin Oncol. 2016;34(20):2341–9.

    Article  PubMed  Google Scholar 

  26. Mamounas EP, Russell CA, Lau A, Turner MP, Albain KS. Clinical relevance of the 21-gene Recurrence Score® assay in treatment decisions for patients with node-positive breast cancer in the genomic era. NPJ Breast Cancer. 2018;20(4):27.

    Article  Google Scholar 

  27. Jakubowski DM, Bailey H, Abran J, Blacklock A, Ciau N, Mies C, Tan V, Young R, Lau A, Baehner FL. Molecular characterization of breast cancer needle core biopsy specimens by the 21-gene breast recurrence score test. J Surg Oncol. 2020;122(4):611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crozier JA, Barone J, Whitworth P, Cheong A, Maganini R, Tamayo JP, Dauer P, Wang S, Audeh W, Glas AM. High concordance of 70-gene recurrence risk signature and 80-gene molecular subtyping signature between core needle biopsy and surgical resection specimens in early-stage breast cancer. J Surg Oncol. 2022;125(4):596–602.

    Article  CAS  PubMed  Google Scholar 

  29. Spring LM, Gupta A, Reynolds KL, Gadd MA, Ellisen LW, Isakoff SJ, Moy B, Bardia A. Neoadjuvant endocrine therapy for estrogen receptor-positive breast cancer: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):1477–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alba E, Calvo L, Albanell J, De la Haba JR, Arcusa Lanza A, Chacon JI, Sanchez-Rovira P, Plazaola A, Lopez Garcia-Asenjo JA, Bermejo B, Carrasco E, Lluch A. GEICAM. Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006–03, a multicenter, randomized, phase-II study. Ann Oncol. 2012;12:3069–74.

    Article  Google Scholar 

  31. Palmieri C, Cleator S, Kilburn LS, Kim SB, Ahn SH, Beresford M, Gong G, Mansi J, Mallon E, Reed S, Mousa K, Fallowfield L, Cheang M, Morden J, Page K, Guttery DS, Rghebi B, Primrose L, Shaw JA, Thompson AM, Bliss JM, Coombes RC. NEOCENT: a randomised feasibility and translational study comparing neoadjuvant endocrine therapy with chemotherapy in ER-rich postmenopausal primary breast cancer. Breast Cancer Res Treat. 2014;148(3):581–90.

    Article  CAS  PubMed  Google Scholar 

  32. Semiglazov VF, Semiglazov VV, Dashyan GA, Ziltsova EK, Ivanov VG, Bozhok AA, Melnikova OA, Paltuev RM, Kletzel A, Berstein LM. Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor-positive breast cancer. Cancer. 2007;110(2):244–54.

    Article  CAS  PubMed  Google Scholar 

  33. Bear HD, Wan W, Robidoux A, Rubin P, Limentani S, White RL Jr, Granfortuna J, Hopkins JO, Oldham D, Rodriguez A, Sing AP. Using the 21-gene assay from core needle biopsies to choose neoadjuvant therapy for breast cancer: a multicenter trial. J Surg Oncol. 2017;115(8):917–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwata H, Masuda N, Yamamoto Y, Fujisawa T, Toyama T, Kashiwaba M, Ohtani S, Taira N, Sakai T, Hasegawa Y, Nakamura R, Akabane H, Shibahara Y, Sasano H, Yamaguchi T, Sakamaki K, Bailey H, Cherbavaz DB, Jakubowski DM, Sugiyama N, Chao C, Ohashi Y. Validation of the 21-gene test as a predictor of clinical response to neoadjuvant hormonal therapy for ER+, HER2-negative breast cancer: the TransNEOS study. Breast Cancer Res Treat. 2019;173(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor C, Meisel J, Foreman AJ, Russell C, Bandyopadhyay D, Deng X, Floyd L, Zelnak A, Bear H, O’Regan R. Using oncotype DX breast recurrence score® assay to define the role of neoadjuvant endocrine therapy in early-stage hormone receptor-positive breast cancer. Breast Cancer Res Treat. 2023;199(1):91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boughey JC, Hoskin TL, Day CN, Goetz MP. Nodal pathologic complete response rates in luminal breast cancer vary by genomic risk. Ann Surg Oncol. 2022;29(10):6254–64.

    Article  PubMed  Google Scholar 

  37. Kalinsky KM, Barlow WE, Gralow JR, Meric-Bernstam F, Albain KS, Hayes DF, Lin NU, Perez EA, Goldstein LA, Chia SKL, Dhesy-Thind S, Rastogi P, Alba E, Delaloge S, Martin M, Kelly CM, Ruiz-Borrego M, Gil-Gil M, Arce-Salinas CH, Brain ECG, Lee ES, Pierga JY, Bermejo B, Ramos-Vasquez M, Jung KH, Ferrero JM, Schnott A, Shak S, Sharma P, Lew D, Miao J, Tripathy D, Pusztai L, Hortobagyi G. San Antonio Breast Cancer Symposium. Updated results from a phaste 3 randomized clinical trial in participants with 1–3 positive lymph nodes, hormone-receptor positive and HER2-negative breast cancer with recurrence score <=25 randomized to endocrine therapy +/- chemotherapy: SWOG S1007 (RxPONDER). San Antonio Breast Cancer Symposium 2021.

  38. Evaluating the addition of adjuvant chemotherapy to ovarian function suppression plus endocrine therapy in premenopausal patients with pN0-1, Er-positive/HER2-negative breast cancer and an oncotype recurrence score less than or equal to 25. clinicaltrials.gov/study/NCT05879926

  39. Giuliano AE, Ballman KV, McCall L, Beitsch PD, Brennan MB, Kelemen PR, Ollila DW, Hansen NM, Whitworth PW, Blumencranz PW, Leitch AM, Saha S, Hunt KK, Morrow M. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA. 2017;318(10):918–26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bartels SAL, Donker M, Poncet C, Sauvé N, Straver ME, van de Velde CJH, Mansel RE, Blanken C, Orzalesi L, Klinkenbijl JHG, van der Mijle HCJ, Nieuwenhuijzen GAP, Veltkamp SC, van Dalen T, Marinelli A, Rijna H, Snoj M, Bundred NJ, Merkus JWS, Belkacemi Y, Petignat P, Schinagl DAX, Coens C, van Tienhoven G, van Duijnhoven F, Rutgers EJT. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer: 10-year results of the randomized controlled EORTC 10981–22023 AMAROS Trial. J Clin Oncol. 2023;41(12):2159–65.

    Article  CAS  PubMed  Google Scholar 

  41. Giannakou A, Gooch J, Gergelis KR, Weiss A. De-escalation of axillary surgery in patients outside Z0011 criteria. Surgery. 2023;S0039–6060(23):00170–8.

    Google Scholar 

  42. Boland MR, Prichard RS, Daskalova I, Lowery AJ, Evoy D, Geraghty J, Rothwell J, Quinn CM, O’Doherty A, McDermott EW. Axillary nodal burden in primary breast cancer patients with positive pre-operative ultrasound guided fine needle aspiration cytology: management in the era of ACOSOG Z011. Eur J Surg Oncol. 2015;41(4):559–65.

    Article  CAS  PubMed  Google Scholar 

  43. Harris CK, Tran HT, Lee K, Mylander C, Pack D, Rosman M, Tafra L, Umbricht CB, Andrade R, Liang W, Jackson RS. Positive ultrasound-guided lymph node needle biopsy in breast cancer may not mandate axillary lymph node dissection. Ann Surg Oncol. 2017;24(10):3004–10.

    Article  PubMed  Google Scholar 

  44. Pilewskie M, Mautner SK, Stempel M, Eaton A, Morrow M. Does a positive axillary lymph node needle biopsy result predict the need for an axillary lymph node dissection in clinically node-negative breast cancer patients in the ACOSOG Z0011 era? Ann Surg Oncol. 2016;23(4):1123–8.

    Article  PubMed  Google Scholar 

  45. Yoo TK, Kang BJ, Kim SH, Song BJ, Ahn J, Park WC, Chae BJ. Axillary lymph node dissection is not obligatory in breast cancer patients with biopsy-proven axillary lymph node metastasis. Breast Cancer Res Treat. 2020;181(2):403–9.

    Article  PubMed  Google Scholar 

  46. Kantor O, Wakeman M, Weiss A, Wong S, Laws A, Grossmith S, Mittendorf EA, King TA. Axillary Management After Neoadjuvant endocrine therapy for hormone receptor-positive breast cancer. Ann Surg Oncol. 2021;28(3):1358–67.

    Article  PubMed  Google Scholar 

  47. Alliance 11202: Comparison of axillary lymph node dissection with axillary radiation for patients with node-positive breast cancer treated with chemotherapy. clinicaltrials.gov/study/NCT01901094

  48. • Kantor O, Weiss A, Burstein HJ, Mittendorf EA, King TA. Sentinel lymph node biopsy alone is adequate for chemotherapy decisions in postmenopausal early-stage hormone-receptor-positive, HER2-negative breast cancer with one to three positive sentinel lymph nodes. Ann Surg Oncol. 2022;29(12):7674–82. This study examines the nodal burden in patients eligible for RxPONDER that only undergo SLNB and suggests that routinely dissecting this population for true estimate of nodal burden is low yield.

    Article  PubMed  Google Scholar 

  49. Farley C, Bassett R, Meric-Bernstam F, Bedrosian I, Caudle A, DeSnyder S, Hunt K, Kuerer H, Singh P, Sun S, Tamirisa N, Teshome M, Hwang RF. To dissect or not to dissect: can we predict the presence of four or more axillary lymph node metastases in postmenopausal women with clinically node-negative breast cancer? Ann Surg Oncol. 2023;30(13):8327–34.

    Article  PubMed  Google Scholar 

  50. Hughes KS, Schnaper LA, Bellon JR, Cirrincione CT, Berry DA, McCormick B, Muss HB, Smith BL, Hudis CA, Winer EP, Wood WC. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: long-term follow-up of CALGB 9343. J Clin Oncol. 2013;31(19):2382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kunkler IH, Williams LJ, Jack WJL, Cameron DA, Dixon JM. Breast-conserving surgery with or without irradiation in early breast cancer. N Engl J Med. 2023;388(7):585–94.

    Article  PubMed  Google Scholar 

  52. Tseng J, Bazan JG, Minami CA, Schonberg MA. Not too little, not too much: optimizing more versus less locoregional treatment for older patients with breast cancer. Am Soc Clin Oncol Educ Book. 2023;43:e390450.

    Article  PubMed  Google Scholar 

  53. Chevli N, Haque W, Tran KT, Farach AM, Schwartz MR, Hatch SS, Butler EB, Teh BS. Role of 21-gene recurrence score in predicting prognostic benefit of radiation therapy after breast-conserving surgery for T1N0 breast cancer. Pract Radiat Oncol. 2023;13(3):e230–8.

    Article  PubMed  Google Scholar 

  54. •• Whelan TJ, Smith S, Parpia S, Fyles AW, Bane A, Liu FF, Rakovitch E, Chang L, Stevens C, Bowen J, Provencher S, Théberge V, Mulligan AM, Kos Z, Akra MA, Voduc KD, Hijal T, Dayes IS, Pond G, Wright JR, Nielsen TO, Levine MN. LUMINA study investigators omitting radiotherapy after breast-conserving surgery in luminal A breast cancer. N Engl J Med. 2023;389(7):612–9. Prospective trial looking at omission of radiation therapy in low risk luminal A breast cancer with low 5-year LRR.

    Article  PubMed  Google Scholar 

  55. Jagsi R, Griffith KA, Harris EE, Wright JL, Recht A, Taghian AG, Lee L, Moran MS, Small W Jr, Johnstone C, Rahimi A, Freedman G, Muzaffar M, Haffty B, Horst K, Powell SN, Sharp J, Sabel M, Schott A, El-Tamer M. Omission of radiotherapy after breast-conserving surgery for women with breast cancer with low clinical and genomic risk: 5-year outcomes of IDEA. J Clin Oncol. 2024;42(4):390–8.

    Article  CAS  PubMed  Google Scholar 

  56. •• Sjöström M, Fyles A, Liu FF, McCready D, Shi W, Rey-McIntyre K, Chang SL, Feng FY, Speers CW, Pierce LJ, Holmberg E, Fernö M, Malmström P, Karlsson P. Development and validation of a genomic profile for the omission of local adjuvant radiation in breast cancer. J Clin Oncol. 2023;41(8):1533–40. Development and validation of a new genomic test focused on predicting RT benefit.

    Article  PubMed  PubMed Central  Google Scholar 

  57. EBCTCG (Early Breast Cancer Trialists' Collaborative Group); McGale P, Taylor C, Correa C, Cutter D, Duane F, Ewertz M, Gray R, Mannu G, Peto R, Whelan T, Wang Y, Wang Z, Darby S. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383(9935):2127–35.

  58. McBride A, Allen P, Woodward W, Kim M, Kuerer HM, Drinka EK, Sahin A, Strom EA, Buzdar A, Valero V, Hortobagyi GN, Hunt KK, Buchholz TA. Locoregional recurrence risk for patients with T1,2 breast cancer with 1–3 positive lymph nodes treated with mastectomy and systemic treatment. Int J Radiat Oncol Biol Phys. 2014;89(2):392–8.

    Article  PubMed  Google Scholar 

  59. •• Jagsi R, Barlow WE, Woodward WA, Connolly E, Mahtani R, Shumway D, Speers C, Stecklein SR, Zeidan Y, Zhang H, Sharma P, Pusztai L, Hortobagyi GN, Kalinsky K. Radiotherapy use and incidence of locoregional recurrence in patients with favorable-risk, node-positive breast cancer enrolled in the SWOG S1007 Trial. JAMA Oncol. 2023;9(8):1083–9. A secondary analysis of the effect of regional nodal irradiation on LRR in patients with 1-3 positive nodes and a RS <25 treated on the RxPONDER trial.

    Article  PubMed  Google Scholar 

  60. TAILOR RT: Regional radiotherapy in biomarker low-risk node positive and T3N0 breast cancer. https://clinicaltrials.gov/study/NCT03488693

  61. DEBRA: de-escalation of breast radiation trial for hormone sensitive, HER-2 negative, oncotype recurrence score less than or equal to 18 breast cancer. https://clinicaltrials.gov/study/NCT04852887

  62. EXPERT: examining personalised radiation therapy for low-risk early breast cancer. https://clinicaltrials.gov/study/NCT02889874

  63. PRECISION: profiling early breast cancer for radiotherapy omission: a phase II study of breast-conserving surgery without adjuvant radiotherapy for favorable-risk breast cancer. https://clinicaltrials.gov/study/NCT02653755

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors drafted the work and revised it critically, were involved in the concept and design as well as analysis of the data.

Corresponding author

Correspondence to Olga Kantor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, K., Kantor, O. Genomic Testing to Guide Local Therapy Decisions in Hormone Receptor-Positive Breast Cancer. Curr Breast Cancer Rep (2024). https://doi.org/10.1007/s12609-024-00538-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12609-024-00538-1

Keywords

Navigation