Skip to main content

Advertisement

Log in

An In Vitro Evaluation of the Effect of Bifidobacterium longum L556 on Microbiota Composition and Metabolic Properties in Patients with Coronary Heart Disease (CHD)

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bifidobacterium longum (B. longum) is a beneficial anaerobic bacteria that may improve cardiovascular disease (CVD). We studied B. longum L556, isolated from healthy human feces, in coronary heart disease (CHD) patients through anaerobic fermentation in vitro. Results showed that B. longum L556 increased Lactobacillus, Faecalibacterium, Prevotella, and Alistipes, while reducing Firmicutes to Bacteroidetes, Eggerthella, Veillonella, Holdemanella, and Erysipelotrichaceae_UCG-003 in the gut microbiota of CHD patients. B. longum L556 also enhanced anti-inflammatory effects by modulating gut microbiota and metabolites like SCFAs. Additionally, it regulated lipid and amino acid metabolism in fermentation metabolites from the CHD group. These findings suggest that B. longum L556 has potential for improving CHD by modulating the intestinal microbiota, promoting SCFA production, and regulating lipid metabolism and inflammation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Alard J, Lehrter V, Rhimi M, Mangin I, Peucelle V, Abraham AL, Mariadassou M et al (2016) Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ Microbiol 18(5):1484–1497. https://doi.org/10.1111/1462-2920.13181

    Article  CAS  Google Scholar 

  2. Wirtz PH, von Kanel R (2017) Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep 19(11):111. https://doi.org/10.1007/s11886-017-0919-x

    Article  PubMed  Google Scholar 

  3. Almeida SO, Budoff M (2019) Effect of statins on atherosclerotic plaque. Trends Cardiovasc Med 29(8):451–455. https://doi.org/10.1016/j.tcm.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Saiyitijiang A, Aizezi M, Zhao Y, Gao Y (2022) Efficacy and safety of new oral anticoagulants combined with antiplatelet drugs in the treatment of coronary heart disease: Systematic evaluation and meta-analysis. Ann Noninvasive Electrocardiol 27(5):e12977. https://doi.org/10.1111/anec.12977

    Article  Google Scholar 

  5. MacCarthy EP, Bloomfield SS (1983) Labetalol: a review of its pharmacology, pharmacokinetics, clinical uses and adverse effects. Pharmacotherapy 3(4):193–219. https://doi.org/10.1002/j.1875-9114.1983.tb03252.x

    Article  CAS  PubMed  Google Scholar 

  6. McKenney JM (1988) Lovastatin: a new cholesterol-lowering agent. Clin Pharm 7(1):21–36

    CAS  PubMed  Google Scholar 

  7. Samarraie Al, Pichette AM, Rousseau G (2023) Role of the gut microbiome in the development of atherosclerotic cardiovascular disease. Int J Mol Sci 24(6). https://doi.org/10.3390/ijms24065420

  8. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H et al (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8(1):845. https://doi.org/10.1038/s41467-017-00900-1

    Article  CAS  Google Scholar 

  9. Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Backhed F, Nielsen J (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245. https://doi.org/10.1038/ncomms2266

    Article  CAS  Google Scholar 

  10. Jin L, Shi X, Yang J, Zhao Y, Xue L, Xu L, Cai J (2021) Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell 12(5):346–359. https://doi.org/10.1007/s13238-020-00785-9

    Article  PubMed  Google Scholar 

  11. Hao H, Li Z, Qiao SY, Qi Y, Xu XY, Si JY, Liu YH et al (2023) Empagliflozin ameliorates atherosclerosis via regulating the intestinal flora. Atherosclerosis 371:32–40. https://doi.org/10.1016/j.atherosclerosis.2023.03.011

    Article  CAS  Google Scholar 

  12. Abdi M, Esmaeili Gouvarchin Ghaleh H, Ranjbar R (2022) Lactobacilli and Bifidobacterium as anti-atherosclerotic agents. Iran J Basic Med Sci 25(8):934–946. https://doi.org/10.22038/IJBMS.2022.63860.14073

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheng R, Zhang Y, Yang Y, Ren L, Li J, Wang Y, Shen X, He F (2022) Maternal gestational Bifidobacterium bifidum TMC3115 treatment shapes construction of offspring gut microbiota and development of immune system and induces immune tolerance to food allergen. Front Cell Infect Microbiol 12:1045109. https://doi.org/10.3389/fcimb.2022.1045109

    Article  CAS  PubMed  Google Scholar 

  14. Luo J, Li Y, Xie J, Gao L, Liu L, Ou S, Chen L, Peng X (2018) The primary biological network of Bifidobacterium in the gut. FEMS Microbiol Lett 365(8). https://doi.org/10.1093/femsle/fny057.

  15. Al-Sheraji SH, Amin I, Azlan A, Manap MY, Hassan FA (2015) Effects of Bifidobacterium longum BB536 on lipid profile and histopathological changes in hypercholesterolaemic rats. Benef Microbes 6(5):661–668. https://doi.org/10.3920/BM2014.0032

    Article  CAS  Google Scholar 

  16. Ma L, Zheng A, Ni L, Wu L, Hu L, Zhao Y, Fu Z, Ni Y (2022) Bifidobacterium animalis subsp. lactis lkm512 attenuates obesity-associated inflammation and insulin resistance through the modification of gut microbiota in high-fat diet-induced obese mice. Mol Nutr Food Res 66(3):e2100639. https://doi.org/10.1002/mnfr.202100639

    Article  CAS  Google Scholar 

  17. Lau AS, Yanagisawa N, Hor YY, Lew LC, Ong JS, Chuah LO, Lee YY et al (2018) Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Benef Microbes 9(1):61–70. https://doi.org/10.3920/BM2017.0063

    Article  CAS  Google Scholar 

  18. Chen G, Wang M, Zeng Z, Xie M, Xu W, Peng Y, Zhou W, Sun Y, Zeng X, Liu Z (2022) Fuzhuan brick tea polysaccharides serve as a promising candidate for remodeling the gut microbiota from colitis subjects in vitro: Fermentation characteristic and anti-inflammatory activity. Food Chem 391:133203. https://doi.org/10.1016/j.foodchem.2022.133203

    Article  CAS  Google Scholar 

  19. Yang L, Xie X, Li Y, Wu L, Fan C, Liang T, Xi Y et al (2021) Evaluation of the cholesterol-lowering mechanism of Enterococcus faecium strain 132 and Lactobacillus paracasei strain 201 in hypercholesterolemia rats.Nutrients 13(6). https://doi.org/10.3390/nu13061982

  20. Li J, Cao Y, Lu R, Li H, Pang Y, Fu H, Fang G et al (2020) Integrated fecal microbiome and serum metabolomics analysis reveals abnormal changes in rats with immunoglobulin a nephropathy and the intervention effect of Zhen Wu Tang. Front Pharmacol 11:606689. https://doi.org/10.3389/fphar.2020.606689

    Article  CAS  Google Scholar 

  21. Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A et al (2020) Short chain fatty acids in human gut and metabolic health. Benef Microbes 11(5):411–455. https://doi.org/10.3920/BM2020.0057

    Article  CAS  PubMed  Google Scholar 

  22. Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5(4):e73. https://doi.org/10.1038/cti.2016.17

    Article  CAS  PubMed  Google Scholar 

  23. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R (2011) Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 22(9):849–855. https://doi.org/10.1016/j.jnutbio.2010.07.009

    Article  CAS  Google Scholar 

  24. Brown JM, Hazen SL (2015) The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 66:343–359. https://doi.org/10.1146/annurev-med-060513-093205

    Article  CAS  PubMed  Google Scholar 

  25. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019) Author Correction: Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16(10):642. https://doi.org/10.1038/s41575-019-0199-6

    Article  CAS  Google Scholar 

  26. Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K et al (2016) Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 23(8):908–921. https://doi.org/10.5551/jat.32672

    Article  CAS  Google Scholar 

  27. Liu S, Zhao W, Liu X, Cheng L (2020) Metagenomic analysis of the gut microbiome in atherosclerosis patients identify cross-cohort microbial signatures and potential therapeutic target. Faseb J 34(11):14166–14181. https://doi.org/10.1096/fj.202000622R

    Article  CAS  Google Scholar 

  28. Boo TW, Cryan B, O’Donnell A, Fahy G (2005) Prosthetic valve endocarditis caused by Veillonella parvula. J Infect 50(1):81–83. https://doi.org/10.1016/j.jinf.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  29. Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ et al (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 108(Suppl 1):4592–4598. https://doi.org/10.1073/pnas.1011383107

    Article  PubMed  Google Scholar 

  30. El-Far M, Durand M, Turcotte I, Larouche-Anctil E, Sylla M, Zaidan S, Chartrand-Lefebvre C et al (2021) Upregulated IL-32 expression and reduced gut short chain fatty acid caproic acid in people living with HIV with subclinical atherosclerosis. Front Immunol 12:664371. https://doi.org/10.3389/fimmu.2021.664371

    Article  CAS  Google Scholar 

  31. Alexander M, Ang QY, Nayak RR, Bustion AE, Sandy M, Zhang B, Upadhyay V, Pollard KS, Lynch SV, Turnbaugh PJ (2022) Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30(1):17–30.e9. https://doi.org/10.1016/j.chom.2021.11.001

    Article  CAS  PubMed  Google Scholar 

  32. Eicher TP, Mohajeri MH (2022) Overlapping mechanisms of action of brain-active bacteria and bacterial metabolites in the pathogenesis of common brain diseases. Nutrients 14(13). https://doi.org/10.3390/nu14132661

  33. Li J, Li Y, Ivey KL, Wang DD, Wilkinson JE, Franke A, Lee KH et al (2022) Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut 71(4):724–733. https://doi.org/10.1136/gutjnl-2020-322473

    Article  CAS  Google Scholar 

  34. Ponziani FR, Nesci A, Caputo C, Salvatore L, Picca A, Del Chierico F, Paroni Sterbini F et al (2023) High prevalence of lower limb atherosclerosis is linked with the gut-liver axis in patients with primary biliary cholangitis. Liver Int 43(2):370–380. https://doi.org/10.1111/liv.15463

    Article  CAS  Google Scholar 

  35. Wu F, Yang L, Islam MT, Jasmine F, Kibriya MG, Nahar J, Barmon B et al (2019) The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environ Int 123:104–113. https://doi.org/10.1016/j.envint.2018.11.049

    Article  CAS  Google Scholar 

  36. Zhang L, Shi M, Ji J, Hu X, Chen F (2019) Gut microbiota determines the prevention effects of Luffa cylindrica (L.) Roem supplementation against obesity and associated metabolic disorders induced by high-fat diet. Faseb J 33(9):10339–10352. https://doi.org/10.1096/fj.201900488R

    Article  CAS  Google Scholar 

  37. Romano KA, Vivas EI, Amador-Noguez D, Rey FE (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6(2):e02481. https://doi.org/10.1128/mBio.02481-14

    Article  CAS  Google Scholar 

  38. Aguilar EC, dos Santos LC, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, da Silva JF et al (2016) Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J Nutr Biochem 34:99–105. https://doi.org/10.1016/j.jnutbio.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Liang J, Zeng M, Sun K, Luo Y, Zheng H, Li F et al (2022) Oxymatrine ameliorates white matter injury by modulating gut microbiota after intracerebral hemorrhage in mice. CNS Neurosci Ther. https://doi.org/10.1111/cns.14066

  40. Li X, Wang C, Zhu J, Lin Q, Yu M, Wen J, Feng J, Hu C (2022) Sodium butyrate ameliorates oxidative stress-induced intestinal epithelium barrier injury and mitochondrial damage through AMPK-mitophagy pathway. Oxid Med Cell Longev 2022:3745135. https://doi.org/10.1155/2022/3745135

    Article  CAS  Google Scholar 

  41. Liu S, Wu J, Wu Z, Alugongo GM, Zahoor Khan M, Li J, Xiao J et al (2022) Tributyrin administration improves intestinal development and health in pre-weaned dairy calves fed milk replacer. Anim Nutr 10:399–411. https://doi.org/10.1016/j.aninu.2022.06.004

    Article  CAS  Google Scholar 

  42. Ohira H, Tsutsui W, Fujioka Y (2017) Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 24(7):660–672. https://doi.org/10.5551/jat.RV17006

    Article  CAS  PubMed  Google Scholar 

  43. van den Munckhof ICL, Kurilshikov A, Ter Horst R, Riksen NP, Joosten LAB, Zhernakova A, Fu J et al (2018) Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev 19(12):1719–1734. https://doi.org/10.1111/obr.12750

    Article  PubMed  Google Scholar 

  44. Devaraj S, Yun JM, Duncan-Staley C, Jialal I (2009) C-reactive protein induces M-CSF release and macrophage proliferation. J Leukoc Biol 85(2):262–267. https://doi.org/10.1189/jlb.0808458

    Article  CAS  Google Scholar 

  45. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22(5):1137–1150. https://doi.org/10.1097/MIB.0000000000000750

    Article  PubMed  Google Scholar 

  46. Shi H, Li Y, Dong C, Si G, Xu Y, Peng M, Li Y (2022) Helicobacter pylori infection and the progression of atherosclerosis: A systematic review and meta-analysis. Helicobacter 27(1):e12865. https://doi.org/10.1111/hel.12865

    Article  PubMed  Google Scholar 

  47. Kim J, Jo Y, Cho D, Ryu D (2022) L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in C. elegans. Nat Commun 13(1):6554. https://doi.org/10.1038/s41467-022-34265-x

    Article  CAS  Google Scholar 

  48. Mutanen A, Nissinen MJ, Lohi J, Heikkila P, Gylling H, Pakarinen MP (2014) Serum plant sterols, cholestanol, and cholesterol precursors associate with histological liver injury in pediatric onset intestinal failure. Am J Clin Nutr 100(4):1085–1094. https://doi.org/10.3945/ajcn.114.088781

    Article  CAS  Google Scholar 

  49. Winkelman JW, Collins GH (1987) Neurotoxicity of tetraphenylporphinesulfonate TPPS4 and its relation to photodynamic therapy. Photochem Photobiol 46(5):801–807. https://doi.org/10.1111/j.1751-1097.1987.tb04851.x

    Article  CAS  Google Scholar 

  50. Cao F, Jin L, Gao Y, Ding Y, Wen H, Qian Z, Zhang C et al (2023) Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat Nanotechnol 18(6):617–627. https://doi.org/10.1038/s41565-023-01346-x

    Article  CAS  Google Scholar 

  51. Fang Z, Pan T, Li L, Wang H, Zhu J, Zhang H, Zhao J, Chen W, Lu W (2022) Bifidobacterium longum mediated tryptophan metabolism to improve atopic dermatitis via the gut-skin axis. Gut Microbes 14(1):2044723. https://doi.org/10.1080/19490976.2022.2044723

    Article  CAS  Google Scholar 

  52. Vitellio P, Celano G, Bonfrate L, Gobbetti M, Portincasa M, De Angelis M (2019) Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: a randomised, double-blind, cross-over study. Nutrients 11(4). https://doi.org/10.3390/nu11040886

Download references

Funding

This study was supported by the Project of National Key Research and Development (2021YFA0910200), Key Laboratory of Guangdong Province (2020B121201009), the GDAS Special Project of Capacity Building for Innovation-driven Development (2020GDASYL-20200103026) and Project by the Department of Science and Technology of Guangdong Province (2019QN01N107).

Author information

Authors and Affiliations

Authors

Contributions

YL, WQ and XX participated in the design of this study. YL, WJ, XX and LY contributed to this work and performed statistical analyses. WY, ZX, ZH and ZJ gathered important background information. YL drafted the manuscript. All authors read and approve the final manuscript.

Corresponding author

Correspondence to Qingping Wu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wu, Y., Zhao, X. et al. An In Vitro Evaluation of the Effect of Bifidobacterium longum L556 on Microbiota Composition and Metabolic Properties in Patients with Coronary Heart Disease (CHD). Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10267-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10267-7

Keywords

Navigation