Skip to main content
Log in

Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, we aimed to produce a standard, more functional, and nutritious yogurt by using 5 different combinations of cow milk and goat milk and 2 types of starter cultures (classical yogurt culture and commercial probiotic culture). It was determined that the use of different milk types and different starter cultures in yogurt production had a statistically very significant effect (P < 0.01) on all physicochemical, microbiological, and biochemical properties. In addition, the storage period was effective on all parameters examined at varying rates. In the context, the use of goat milk in the experimental yogurt samples caused an increase in the ACE inhibitory activity values and the count of S. thermophilus, while the use of cow milk caused an increase in serum separation and pH values. On the other hand, serum separation, pH values, and ACE inhibitory activity and phenylalanine and leucine levels were found to be higher in the yogurts produced by using ABT-2 probiotic culture. It was observed that an increase in the levels of asparagine, aspartic acid, proline, and serine, as well as lactic acid, orotic acid, and citric acid, is higher in the yogurts produced by using classical yogurt culture. It has been concluded that the combination of goat milk and cow milk at different proportions and the use of probiotic culture together in yogurt production can produce yogurt that is more functional and richer in terms of organic compounds and essential amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sarkar S (2018) Potentiality of probiotic yoghurt as a functional food-a review. Nutr Food Sci 49(2):182–202. https://doi.org/10.1108/NFS-05-2018-0139

    Article  Google Scholar 

  2. Zahid HF, Ranadheera CS, Fang Z, Ajlouni S (2022) Functional and healthy yogurts fortified with probiotics and fruit peel powders. Ferment 8(9):469. https://doi.org/10.3390/fermentation8090469

    Article  CAS  Google Scholar 

  3. Da Silva TMS, Piazentin ACM, Mendonça CMN, Converti A, Bogsan CSB, Mora D, de Souza Oliveira RP (2020) Buffalo milk increases viability and resistance of probiotic bacteria in dairy beverages under in vitro simulated gastrointestinal conditions. J Dairy Sci 103(9):7890–7897. https://doi.org/10.3168/jds.2019-18078

    Article  CAS  Google Scholar 

  4. Sultan S, Huma N, Butt MS, Shahid M (2017) Antihypertensive and antioxidative potential of water soluble peptide fraction from different yoghurts. J Food Process Preserv 41(3):e12979. https://doi.org/10.1111/jfpp.12979

    Article  CAS  Google Scholar 

  5. Hermanto S, Hatiningsih F, Putera DK (2018) Antihypertensive bioactive peptides from hydrolysates of soy milk yoghurt (soygurt). The 6th International Conference of the Indonesian Chemical Society, Conference Series, vol 1095, 1. IOP Publishing, p 012034

    Google Scholar 

  6. Garavand F, Daly DF, Gómez-Mascaraque LG (2022) Biofunctional, structural, and tribological attributes of GABA-enriched probiotic yoghurts containing Lacticaseibacillus paracasei alone or in combination with prebiotics. Int Dairy J 129:105348. https://doi.org/10.1016/j.idairyj.2022.105348

    Article  CAS  Google Scholar 

  7. Vénica CI, Perotti MC, Bergamini CV (2014) Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition. Dairy Sci Technol 94(6):561–580. https://doi.org/10.1007/s13594-014-0180-7

    Article  CAS  Google Scholar 

  8. Batista ALD, Silva R, Cappato LP, Ferreira MVS, Nascimento KO, Schmiele M, Esmerino EA, Balthazar CF, Silva HLA, Moraes J, Pimentel TC, Freitas MQ, Raices RSL, Silva MC, Cruz AG (2017) Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J Funct Foods 38:242–250. https://doi.org/10.1016/j.jff.2017.09.037

    Article  CAS  Google Scholar 

  9. Sharma H, El Rassi GD, Lathrop A, Dobreva VB, Belem TS, Ramanathan R (2021) Comparative analysis of metabolites in cow and goat milk yoghurt using GC–MS based untargeted metabolomics. Int Dairy J 117:105016. https://doi.org/10.1016/j.idairyj.2021.105016

    Article  CAS  Google Scholar 

  10. Terzioğlu ME, Bakırcı İ (2023) Comparison of buffalo’s, sheep’s and goat’s yoghurts in terms of their antioxidant activity, angiotensin-converting enzyme (ACE) inhibitory activity, volatile compound content and 5-hydroxymethylfurfural (HMF) content. Med Weter 79(3):148–152. https://doi.org/10.21521/mw.6727

    Article  Google Scholar 

  11. Wang L, Wu T, Zhang Y, Yang K, He Y, Deng K, Liang C, Gu Y (2023) Comparative studies on the nutritional and physicochemical properties of yoghurts from cows’, goats’, and camels’ milk powder. Int Dairy J 138:105542. https://doi.org/10.1016/j.idairyj.2022.105542

    Article  CAS  Google Scholar 

  12. Terzioğlu ME, Yıldız Küçük N, Bakırcı İ (2022) The Effect of pineapple addition at different rates to sheep yoghurt on antioxidant activity, 5-Hydroxymethylfurfural (HMF) content, and ABT-2 probiotic culture growth. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Derg 15(Special Issue on 4th International Conference on Advanced Engineering Technologies):84–97. https://doi.org/10.18185/erzifbed.1199636

    Article  Google Scholar 

  13. Yıldız N, Bakırcı I (2019) Investigation of the use of whey powder and buttermilk powder instead of skim milk powder in yogurt production. J Food Sci Technol 56(10):4429–4436. https://doi.org/10.1007/s13197-019-03953-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Atila A, Alay H, Yaman ME, Akman TC, Cadirci E, Bayrak B, Celik S, Atila NE, Yaganoglu AM, Kadioglu Y, Halıcı Z, Parlak E, Bayraktutan Z (2021) The serum amino acid profile in COVID-19. Amino Acids 53(10):1569–1588. https://doi.org/10.1007/s00726-021-03081-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648. https://doi.org/10.1016/0006-2952(71)90292-9

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin-converting enzyme inhibitors from sour milk. J Dairy Sci 78:777–783. https://doi.org/10.3168/jds.S0022-0302(95)76689-9

    Article  CAS  PubMed  Google Scholar 

  17. Çelik S, Gerçek YC, Özkök A, Ecem Bayram N (2022) Organic acids and their derivatives: minor components of bee pollen, bee bread, royal jelly and bee venom. Eur Food Res Technol 248(12):3037–3057. https://doi.org/10.1007/s00217-022-04110-y

    Article  CAS  Google Scholar 

  18. Kavaz A (2012) Determination of organic acid contents, aroma profile and other quality characteristics of probiotic yoghurts produced with the combinations of different prebiotics. PhD Thesis, Atatürk University, Erzurum, Türkiye

  19. Mohammed AEI, Elgasim EA, Basheer EO, Elhassan IH (2022) Physicochemical, minerals and fatty acids of yoghurt as affected by milk source. Int J Innov Sci Eng Technol 9:24–38

    Google Scholar 

  20. Shalabi OM (2022) Antioxidant, antibacterial, and antitumor activities of goat’s stirred yoghurt fortified with carob molasses. Ann Agric Sci 67(1):119–126. https://doi.org/10.1016/j.aoas.2022.06.003

    Article  Google Scholar 

  21. Silva FA, do Egypto Queiroga RDCR, de Souza EL, Voss GB, Borges GDSC, Lima MDS, Pintado MME, Vasconcelos MADS, (2022) Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt. Food Chem 369:130957. https://doi.org/10.1016/j.foodchem.2021.130957

    Article  CAS  PubMed  Google Scholar 

  22. Al Mijan M, Choi KH, Kwak HS (2014) Physicochemical, microbial, and sensory properties of nanopowdered eggshell-supplemented yogurt during storage. J Dairy Sci 97(6):3273–3280. https://doi.org/10.3168/jds.2013-7367

    Article  CAS  PubMed  Google Scholar 

  23. Bulut M, Tunçtürk Y, Alwazeer D (2021) Effect of fortification of set-type yoghurt with different plant extracts on its physicochemical, rheological, textural and sensory properties during storage. Int J Dairy Technol 74(4):723–736. https://doi.org/10.1111/1471-0307.12803

    Article  CAS  Google Scholar 

  24. Özdemir T, Özcan T (2019) Süt ürünlerinin mikro yapısının oluşumunda süt proteinlerinin önemi. Bursa Uludağ Üniv Ziraat Fak Derg 33(2):355–374

    Google Scholar 

  25. Corrieu G, Béal C (2016) Yogurt: the product and its manufacture. The Encyclopedia of Food and Health, vol 5. Academic Press, pp 617–624

    Chapter  Google Scholar 

  26. Dayısoylu KS (1997) Çeşitli laktik kültür kombinasyonlarının yoğurt ve benzeri fermente süt ürünleri yapımında kullanılması ve elde edilen bu ürünlerin bazı özellikleri üzerine depolama sürelerinin etkisi. PhD Thesis, Yüzüncü Yıl University, Van, Türkiye

  27. Tamime AY, Robinson RK (1999) Yoghurt science and technology, 2nd edn. Woodhead Publishing, England, p 619

    Google Scholar 

  28. Nagaoka S (2019) Yogurt production. In: Kanauchi M (ed) Lactic acid bacteria: methods and protocols. Springer, New York, pp 45–54

    Chapter  Google Scholar 

  29. Buran İ, Akal C, Ozturkoglu-Budak S, Yetisemiyen A (2021) Rheological, sensorial and volatile profiles of synbiotic kefirs produced from cow and goat milk containing varied probiotics in combination with fructooligosaccharide. LWT 148:111591. https://doi.org/10.1016/j.lwt.2021.111591

    Article  CAS  Google Scholar 

  30. Buran I, Akal HC, Ozturkoğlu-Budak S, Yetisemiyen A (2022) Effect of milk kind on the physicochemical and sensorial properties of synbiotic kefirs containing Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-11 accompanied with inulin. Food Sci Technol 42:e08421. https://doi.org/10.1590/fst.08421

    Article  Google Scholar 

  31. Dave RI, Shah NP (1997) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int Dairy J 7(1):31–41. https://doi.org/10.1016/S0958-6946(96)00046-5

    Article  Google Scholar 

  32. Lourens-Hattingh A, Viljoen BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11(1–2):1–17. https://doi.org/10.1016/S0958-6946(01)00036-X

    Article  Google Scholar 

  33. Narvhus JA, Abrahamsen RK (2021) Yogurt: role of starter culture. In: McSweeney PLH, McNamara JP (eds) Encyclopedia of Dairy Sciences, 3rd ed. Academic Press, pp 496–501

    Google Scholar 

  34. Feng C, Wang B, Zhao A, Wei L, Shao Y, Wang Y, Cao B, Zhang F (2019) Quality characteristics and antioxidant activities of goat milk yogurt with added jujube pulp. Food Chem 277:238–245. https://doi.org/10.1016/j.foodchem.2018.10.104

    Article  CAS  PubMed  Google Scholar 

  35. McKevith B, Shortt C (2003) Fermented milks-other relevant products. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition, 2nd ed. Academic Press, pp 2383–2389

    Chapter  Google Scholar 

  36. Vargas-Ramella M, Pateiro M, Maggiolino A, Faccia M, Franco D, De Palo P, Lorenzo JM (2021) Buffalo milk as a source of probiotic functional products. Microorganisms 9(11):2303. https://doi.org/10.3390/microorganisms9112303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maduka HCC, Maduka AA, Ugwu CE, Mukthari I (2013) Amino acid profile and elemental compositions of some commercially produced fermented milk (yoghurt) in Maiduguri Metropolis of Nigeria. Br J Dairy Sci 3(2):9–13

    Google Scholar 

  38. Landi N, Ragucci S, Di Maro A (2021) Amino acid composition of milk from cow, sheep and goat raised in Ailano and Valle Agricola, two localities of ‘Alto Casertano’(Campania Region). Foods 10(10):2431. https://doi.org/10.3390/foods10102431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shihata A, Shah NP (2000) Proteolytic profiles of yogurt and probiotic bacteria. Int Dairy J 10(5–6):401–408. https://doi.org/10.1016/S0958-6946(00)00072-8

    Article  CAS  Google Scholar 

  40. Germani A, Luneia R, Nigro F, Vitiello V, Donini LM, Del Balzo V (2014) The yogurt amino acid profile’s variation during the shelf-life. Ann Ig: Med Prev Comunità 26(3):205–212. https://doi.org/10.7416/ai.2014.1978

    Article  CAS  Google Scholar 

  41. Donkor ON, Henriksson A, Singh TK, Vasiljevic T, Shah NP (2007) ACE-inhibitory activity of probiotic yoghurt. Int Dairy J 17(11):1321–1331. https://doi.org/10.1016/j.idairyj.2007.02.009

    Article  CAS  Google Scholar 

  42. Koçak A, Şanlı T (2016) Süt proteini kaynaklı ACE-inhibitör peptitleri: Oluşumu, etki mekanizması ve biyoyararlılıkları. Gıda 41(4):275–282. https://doi.org/10.15237/gida.GD16024

    Article  Google Scholar 

  43. Shu G, Shi X, Chen H, Ji Z, Meng J (2017) Optimization of goat milk with ACE inhibitory peptides fermented by Lactobacillus bulgaricus LB6 using response surface methodology. Molecules 22(11):2001. https://doi.org/10.3390/molecules22112001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alhaj OA (2017) Identification of potential ACE-inhibitory peptides from dromedary fermented camel milk. CyTA-J Food 15(2):191–195. https://doi.org/10.1080/19476337.2016.1236353

    Article  CAS  Google Scholar 

  45. Shi M, Ahtesh F, Mathai M, McAinch AJ, Su XQ (2017) Effects of fermentation conditions on the potential anti-hypertensive peptides released from yogurt fermented by Lactobacillus helveticus and Flavourzyme®. Int J Food Sci Technol 52(1):137–145. https://doi.org/10.1111/ijfs.13253

    Article  CAS  Google Scholar 

  46. Arief II, Budiman C, Hanifah R, Soenarno MS (2016) Antihypertensive potency of goat milk yoghurt supplemented by probiotic and roselle extract. In J Sci: Basic Appl Res 30:207–214

    Google Scholar 

  47. Rezaei A, Amirdivani S, Asl AK, Malekinejad H, Zomorodi S, Hosseinmardi F (2019) Inhibition of the Angiotensin I Converting Enzyme (ACE) and proteolysis of non-fat probiotic yogurt. Braz J Food Technol 22:e2018234. https://doi.org/10.1590/1981-6723.23418

    Article  CAS  Google Scholar 

  48. Kim ED, Lee HS, Kim KT, Paik HD (2021) Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of yogurt supplemented with Lactiplantibacillus plantarum NK181 and Lactobacillus delbrueckii KU200171 and sensory evaluation. Foods 10(10):2324. https://doi.org/10.3390/foods10102324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Navrátilova P, Borkovcova I, Stastkova Z, Bednarova I, Vorlova L (2022) Effect of cephalosporin antibiotics on the activity of yoghurt cultures. Foods 11(18):2751. https://doi.org/10.3390/foods11182751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ndhlala AR, Kavaz Yüksel A, Yüksel M (2022) Nutritional supplementation of yogurt with jerusalem artichoke tubers: organic acid profiles and quality parameters. Plants 11(22):3086. https://doi.org/10.3390/plants11223086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73(2):374–379. https://doi.org/10.1093/ajcn/73.2.374s

    Article  Google Scholar 

  52. Qi P, Hong H, Liang X, Liu D (2009) Assessment of benzoic acid levels in milk in China. Food Control 20(4):414–418. https://doi.org/10.1016/j.foodcont.2008.07.013

    Article  CAS  Google Scholar 

  53. Fernandez-Garcia E, McGregor JU (1994) Determination of organic acids during the fermentation and cold storage of yogurt. J Dairy Sci 77(10):2934–2939. https://doi.org/10.3168/jds.S0022-0302(94)77234-9

    Article  CAS  PubMed  Google Scholar 

  54. Silva FA, do Egypto Queiroga RDCR, de Souza EL, Voss GB, Pintado MME, da Silva Vasconcelos MA (2023) Ingredients from integral valorization of Isabel grape to formulate goat yogurt with stimulatory effects on probiotics and beneficial impacts on human colonic microbiota in vitro. Food Sci Hum Wellness 12(4):1331–1342. https://doi.org/10.1016/j.fshw.2022.10.034

    Article  CAS  Google Scholar 

  55. Özdemir S, Bodur AE (1994) Yoğurt üretimi sırasında oluşan fiziksel, kimyasal ve biyokimyasal olaylar. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 25(3):479–487

    Google Scholar 

  56. Deshwal GK, Tiwari S, Kumar A, Raman RK, Kadyan S (2021) Review on factors affecting and control of post-acidification in yoghurt and related products. Trends Food Sci Technol 109:499–512. https://doi.org/10.1016/j.tifs.2021.01.057

    Article  CAS  Google Scholar 

  57. Urbienė S, Leskauskaitė D (2006) Formation of some organic acids during fermentation of milk. Pol J Food Nutr Sci 15(56):277–281

    Google Scholar 

  58. Milsom PE (1987) Organic acids by fermentation, especially citric acid. In Food Biotechnology-1. Springer, Dordrecht, pp 273–307

    Chapter  Google Scholar 

  59. Gonzalez-Gonzalez CR, Tuohy KM, Jauregi P (2011) Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: Effects of calcium, pH and peptides on the ACE-inhibitory activity. Int Dairy J 21(9):615–622. https://doi.org/10.1016/j.idairyj.2011.04.001

    Article  CAS  Google Scholar 

  60. Chamata Y, Watson KA, Jauregi P (2020) Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors. Int J Mol Sci 21(3):864. https://doi.org/10.3390/ijms21030864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Delgado-Fernández P, Corzo N, Olano A, Hernández-Hernández O, Moreno FJ (2019) Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. Int Dairy J 89:77–85. https://doi.org/10.1016/j.idairyj.2018.09.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Atatürk University Scientific Research Projects Coordination Unit (Project No.: FDK-2020-7549), Atatürk University Eastern Anatolia High Technology Application and Research Center (DAYTAM), and Atatürk University Food and Livestock Application and Research Center for their support in conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MET and İB; methodology: MET and İB; validation: MET and İB; formal analysis: MET and İB; investigation: MET and İB; resources: MET and İB; writing—original draft preparation: MET and İB; writing—review and editing: MET and İB; visualization: MET and İB; supervision: İB. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Murat Emre Terzioğlu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1104 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terzioğlu, M.E., Bakirci, İ. Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10123-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10123-0

Keywords

Navigation