Skip to main content
Log in

Anticancer Properties of Saccharomyces boulardii Metabolite Against Colon Cancer Cells

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae var. boulardii has been used as a probiotic yeast in the medical and food industries. Colon cancers have been known as the third most common cancer type worldwide. Nowadays, cell-free extract and metabolites of probiotics have been employed for the treatment or prevention of different cancer diseases. This study investigates the anticancer properties of S. boulardii metabolites against human colon carcinoma. We evaluated cytotoxicity, apoptosis induction, and suppression of survivin, IL-8, and NFƙB gene expression effects of SBM against caco-2 cells after 24 and 48 h. IC50 concentrations of SBM were measured at 815 and 1411 µg/mL for 24 and 48 h treatments, respectively. The total proportion of apoptotic caco-2 cells treated with SBM after 24 and 48 h were calculated at 62.23 and 88.7%, respectively. Also, relative expression of survivin, IL-8, and NFƙB genes were significantly suppressed in caco-2 cells treated with SBM after 24 and 48 h. In conclusion, we found that SBM induced apoptosis, inhibited the growth rate, and suppressed the expression of the survivin, IL-8, and NFƙB genes in human colorectal cancer cells and it can be considered as a perspective supplement or drug for the treatment or prevention of colon cancer in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

We confirm that all the data and findings of this study are available within the article.

Code Availability

Not applicable.

References

  1. Ahmed M (2020) Colon cancer: a clinician’s perspective in 2019. Gastroenterology Res 13:1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rafiemanesh H, Pakzad R, Abedi M et al (2016) Colorectal cancer in Iran: epidemiology and morphology trends. EXCLI J 15:738

    PubMed  PubMed Central  Google Scholar 

  3. Chakrabarti S, Peterson CY, Sriram D et al (2020) Early stage colon cancer: current treatment standards, evolving paradigms, and future directions. World J Gastrointest Oncol 12:808

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fotheringham S, Mozolowski GA, Murray EM et al (2019) Challenges and solutions in patient treatment strategies for stage II colon cancer. Gastroenterology report 7:151–161

    Article  PubMed  PubMed Central  Google Scholar 

  5. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M et al (2019) Mechanisms of action of probiotics. Adv Nutr 10:S49–S66

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanders M, Merenstein D, Merrifield C et al (2018) Probiotics for human use Nutrition bulletin 43:212–225

    Article  Google Scholar 

  7. Stavropoulou E, Bezirtzoglou E (2020) Probiotics in medicine: a long debate. Front Immunol 11:2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Trush EA, Poluektova EA, Beniashvilli AG et al (2020) The evolution of human probiotics: challenges and prospects. Probiotics and antimicrobial proteins 12:1291–1299

    Article  CAS  PubMed  Google Scholar 

  9. Wan MLY, Forsythe SJ, El-Nezami H (2019) Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr 59:3320–3333

    Article  CAS  PubMed  Google Scholar 

  10. Żółkiewicz J, Marzec A, Ruszczyński M et al (2020) Postbiotics—a step beyond pre-and probiotics. Nutrients 12:2189

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shenderov BA, Sinitsa AV, Zakharchenko M et al (2020) Metabiotics. Springer

    Book  Google Scholar 

  12. Shenderov BA, Sinitsa AV, Zakharchenko MM et al (2020) Cellular metabiotics and metabolite metabiotics. In: Metabiotics. Springer, p 63–75

  13. Singh A, Vishwakarma V, Singhal B (2018) Metabiotics: the functional metabolic signatures of probiotics: current state-of-art and future research priorities—metabiotics: probiotics effector molecules. Adv Biosci Biotechnol 9:147

    Article  CAS  Google Scholar 

  14. Pais P, Almeida V, Yılmaz M et al (2020) Saccharomyces boulardii: what makes it tick as successful probiotic? J Fungi 6:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imre A, Kovács R, Pázmándi K et al (2021) Virulence factors and in-host selection on phenotypes in infectious probiotic yeast isolates (Saccharomyces ‘boulardii’). J Fungi 7:746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pakbin B, Dibazar SP, Allahyari S et al (2022) Anticancer properties of probiotic Saccharomyces boulardii supernatant on human breast cancer cells. Probiotics Antimicrob 1–9

  17. Allahyari S, Dibazar SP, Pakbin B et al (2020) Anticancer effect of probiotic Saccharomyces boulardii supernatant on human caco-2 cells: an in vitro study. Carpathian J Food Sci Technol 12

  18. Ashrafi Tamai I, Mohammadzadeh A, Zahraei Salehi T et al (2021) Investigation of antimicrobial susceptibility and virulence factor genes in Trueperella pyogenes isolated from clinical mastitis cases of dairy cows. Food Sci Nutr 9:4529–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu J, Liu J, Wen X et al (2022) Unique probiotic properties and bioactive metabolites of Saccharomyces boulardii. Probiotics Antimicrob 1–16

  20. An Z, Li J, Yu J et al (2019) Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell Cycle 18:2928–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rao X, Huang X, Zhou Z et al (2013) An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, bioinformatics and biomathematics 3:71

    PubMed  PubMed Central  Google Scholar 

  22. Azevedo L, Chagas-Paula DA, Kim H et al (2016) White mold (Sclerotinia sclerotiorum), friend or foe: cytotoxic and mutagenic activities in vitro and in vivo. Food Res Int 80:27–35

    Article  CAS  Google Scholar 

  23. Geng R, Tan X, Wu J et al (2017) RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-κB-IL-8 axis. Cell Death Dis 8:e2994–e2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zein R, Alghoraibi I, Soukkarieh C et al (2020) In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus camaldulensis leaves. Heliyon 6:e04594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan X, Guo H, Teng C et al (2022) Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in caco-2 cells. Foods 11:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Awadelkareem AM, Al-Shammari E, Elkhalifa AEO et al (2022) Phytochemical and in silico ADME/Tox analysis of Eruca sativa extract with antioxidant, antibacterial and anticancer potential against Caco-2 and HCT-116 colorectal carcinoma cell lines. Molecules 27:1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nozari S, Faridvand Y, Etesami A et al (2019) Potential anticancer effects of cell wall protein fractions from Lactobacillus paracasei on human intestinal Caco-2 cell line. Lett Appl Microbiol 69:148–154

    CAS  PubMed  Google Scholar 

  28. Nowak A, Zakłos-Szyda M, Rosicka-Kaczmarek J et al (2022) Anticancer potential of post-fermentation media and cell extracts of probiotic strains: an in vitro study. Cancers 14:1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Adiyoga R, Arief II, Budiman C et al (2022) In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line. Food Sci Technol 42

  30. Datta S, Timson DJ, Annapure US (2017) Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. J Sci Food Agric 97:3039–3049

    Article  CAS  PubMed  Google Scholar 

  31. Vahed SZ, Barzegari A, Saadat YR et al (2017) Leuconostoc mesenteroides-derived anticancer pharmaceuticals hinder inflammation and cell survival in colon cancer cells by modulating NF-κB/AKT/PTEN/MAPK pathways. Biomed Pharmacother 94:1094–1100

    Article  Google Scholar 

  32. Sharma M, Chandel D, Shukla G (2020) Antigenotoxicity and cytotoxic potentials of metabiotics extracted from isolated probiotic, Lactobacillus rhamnosus MD 14 on Caco-2 and HT-29 human colon cancer cells. Nutr Cancer 72:110–119

    Article  CAS  PubMed  Google Scholar 

  33. Sharma M, Shukla G (2020) Administration of metabiotics extracted from probiotic Lactobacillus rhamnosus MD 14 inhibit experimental colorectal carcinogenesis by targeting Wnt/β-catenin pathway. Front Oncol 10:746

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pourbaferani M, Modiri S, Norouzy A et al (2021) A newly characterized potentially probiotic strain, Lactobacillus brevis MK05, and the toxicity effects of its secretory proteins against MCF-7 breast cancer cells. Probiotics Antimicrob 13:982–992

    Article  CAS  PubMed  Google Scholar 

  35. Kim H-J, An J, Ha E-M (2022) Lactobacillus plantarum-derived metabolites sensitize the tumor-suppressive effects of butyrate by regulating the functional expression of SMCT1 in 5-FU-resistant colorectal cancer cells. J Microbiol 60:100–117

    Article  CAS  PubMed  Google Scholar 

  36. Oh T-I, Lee Y-M, Nam T-J et al (2017) Fascaplysin exerts anti-cancer effects through the downregulation of survivin and HIF-1α and inhibition of VEGFR2 and TRKA. Int J Mol Sci 18:2074

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sougioultzis S, Simeonidis S, Bhaskar KR et al (2006) Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem Biophys Res Commun 343:69–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate all the technicians and our colleagues at the Medical Microbiology Research Center, Qazvin University of Medical Sciences, who assisted us in this research project.

Author information

Authors and Affiliations

Authors

Contributions

Babak Pakbin, Samaneh Allahyari, Shaghayegh Pishkhan Dibazar, and Mozhdeh Khajeh Haghverdi implemented the cellular and molecular experiments, including SBM preparation, cell culture, treatments, MTT assay, and relative gene expression; Amir Peymani, Khadijeh Taherkhani, and Maryam Javadi implemented the flow cytometry analysis; Babak Pakbin analyzed all the results and wrote and reviewed the first draft of the manuscript; Razzagh Mahmoudi supervised and managed the project, provided the sources, and revised the final draft of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Razzagh Mahmoudi.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakbin, B., Allahyari, S., Dibazar, S.P. et al. Anticancer Properties of Saccharomyces boulardii Metabolite Against Colon Cancer Cells. Probiotics & Antimicro. Prot. 16, 224–232 (2024). https://doi.org/10.1007/s12602-022-10030-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-10030-w

Keywords

Navigation