Skip to main content

Advertisement

Log in

Purification, Characterization, and Assessment of Antimicrobial Activity and Toxicity of Portulaca elatior Leaf Lectin (PeLL)

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lectins are carbohydrate-binding proteins with several bioactivities, including antimicrobial properties. Portulaca elatior is a species found at Brazilian Caatinga and data on the biochemical composition of this plant are scarce. The present work describes the purification of P. elatior leaf lectin (PeLL) as well as the assessment of its antimicrobial activity and toxicity. PeLL, isolated by chromatography on a chitin column, had native liquid charge and subunit composition evaluated by electrophoresis. Hemagglutinating activity (HA) of PeLL was determined in the presence of carbohydrates or divalent cations, as well as after heating and incubation at different pH values. Changes in the lectin conformation were monitored by evaluating intrinsic tryptophan fluorescence and using the extrinsic probe bis-ANS. Antimicrobial activity was evaluated against Pectobacterium strains and Candida species. The minimal inhibitory (MIC), bactericidal (MBC), and fungicidal (MFC) concentrations were determined. Finally, PeLL was evaluated for in vitro hemolytic activity in human erythrocytes and in vivo acute toxicity in mice (5 and 10 mg/kg b.w. per os). PeLL (pI 5.4; 20 kDa) had its HA was inhibited by mannose, galactose, Ca2+, Mg2+, and Mn2+. PeLL HA was resistant to heating at 100 °C, although conformational changes were detected. PeLL was more active in the acidic pH range, in which no conformational changes were observed. The lectin presented MIC and MBC of 0.185 and 0.74 μg/mL for all Pectobacterium strains, respectively; MIC of 1.48 μg/mL for C. albicans, C. tropicalis, and C. krusei; MIC and MFC of 0.74 and 2.96 μg/mL for C. parapsilosis. No hemolytic activity or signs of acute toxicity were observed in the mice. In conclusion, a new, low-toxic, and thermostable lectin was isolated from P. elatior leaves, being the first plant compound to show antibacterial activity against Pectobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References 

  1. Carneiro LM, Xavier FB (2017) Infecção vaginal causada por Candida sp: revisão da literatura. Rev Uningá 7:23–32

    Google Scholar 

  2. Oladele R, Ogunsola F, Akanmu A et al (2020) Opportunistic fungal infections in persons living with advanced HIV disease in Lagos, Nigeria; a 12-year retrospective study. Afr Health Sci 20:1573–1581. https://doi.org/10.4314/ahs.v20i4.9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vasconcelos AA, Menezes EA, Cunha FA (2011) Chromogenic medium for direct susceptibility testing of Candida spp. isolated from urine. Mycopathologia 172:125–130. https://doi.org/10.1007/s11046-011-9407-9

    Article  CAS  PubMed  Google Scholar 

  4. Rocha FMG, Rocha CHL, Mendonça AMS et al (2018) Virulência de isolados clínicos de Candida tropicalis. Rev Investig Biomédica 9:118–128. https://doi.org/10.24863/rib.v9i2.146

  5. Yaneja N, Kaur H (2016) Insights into newer antimicrobial agents against gram-negative bacteria. Microbiol Insights 9:MBI.S29459. https://doi.org/10.4137/MBI.S29459

  6. Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267. https://doi.org/10.1128/MMBR.00045-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berto C, Wirth F, Barth N, Hermes DM (2018) Bases da resistência antifúngica: uma revisão comentada. Rev Uningá 3:52–71

    Article  Google Scholar 

  8. Nóbrega RLB, Guzha AC, Lamparter G et al (2018) Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes. Sci Total Environ 635:259–274. https://doi.org/10.1016/j.scitotenv.2018.03.356

    Article  CAS  PubMed  Google Scholar 

  9. Júnior MF, Soares AG (2014) Orientações quanto ao manuseio pré e pós-colheita de frutas e hortaliças visando à redução de suas perdas. Comunicado Técnico 205, Embrapa

  10. Fan X, Ye T, Li Q et al (2020) Potential of a quorum quenching bacteria isolate Ochrobactrum intermedium D-2 against soft rot pathogen Pectobacterium carotovorum subsp. carotovorum. Front Microbiol 11:898. https://doi.org/10.3389/fmicb.2020.00898

  11. Waleron M, Misztak A, Waleron M et al (2018) Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst Appl Microbiol 41:85–93. https://doi.org/10.1016/j.syapm.2017.11.005

    Article  PubMed  Google Scholar 

  12. Melo MRF, Souza EB, Pinto KMS et al (2017) Redução da podridão mole em couve-chinesa mediada por indutores de resistência. Rev CIENTEC 9:15–24

    Google Scholar 

  13. Filho RCC, Melo SCM (2008) Pectobacterium carotovorum: taxonomia, identificação, sintomatologia, epidemiologia e controle. Brasília, Embrapa Recursos Genéticos e Biotecnologia

  14. Ferrarezi JH, Santos JA, Sette LD et al (2019) Anti-Xanthomonas activity of Antarctic fungi crude extracts. African J Biotechnol 18:713–718. https://doi.org/10.5897/AJB2019.16886

    Article  CAS  Google Scholar 

  15. Kussumi TA, Lemes VRR, Nakano VE, Rocha SB, Kimura IDA, Silva ICD (2011) Avaliação de hexaclorociclohexano em águas nas circunvizinhanças de um passivo ambiental. Rev Inst Adolfo Lutz 3:408–411

    Google Scholar 

  16. Mendez A, Ng CA, Torres JPM et al (2016) Modeling the dynamics of DDT in a remote tropical floodplain: indications of post-ban use? Environ Sci Pollut Res 23:10317–10334. https://doi.org/10.1007/s11356-015-5641-x

    Article  CAS  Google Scholar 

  17. Stenström JR, Kreuger J, Goedkoop W (2021) Pesticide mixture toxicity to algae in agricultural streams – field observations and laboratory studies with in situ samples and reconstituted water. Ecotoxicol Environ Saf 215:112153. https://doi.org/10.1016/j.ecoenv.2021.112153

    Article  CAS  Google Scholar 

  18. Chaudhary S, Kanwar RK, Sehgal A et al (2017) Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front Plant Sci 8:610. https://doi.org/10.3389/fpls.2017.00610

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yu T, Jiang G, Gao R et al (2020) Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opin Drug Deliv 17:1151–1164. https://doi.org/10.1080/17425247.2020.1779697

    Article  CAS  PubMed  Google Scholar 

  20. Coelho LCBB, Silva PMS, Oliveira WF et al (2018) Lectins as antimicrobial agents. J Appl Microbiol 125:1238–1252. https://doi.org/10.1111/jam.14055

    Article  CAS  Google Scholar 

  21. Almeida WA, Silva TN, Nova ICV et al (2020) The roles of bacterial membrane glycans and their importance as targets of antimicrobial lectins. In: Toft AC (ed) Frontiers in Bacteriology Research. Nova Science Publishers Inc., New York, pp 197–218

    Google Scholar 

  22. Coelho LCBB, Silva PMS, Lima VLM et al (2017) Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid Based Complement Alternat Med 2017:1594074. https://doi.org/10.1155/2017/1594074

    Article  PubMed  PubMed Central  Google Scholar 

  23. Patriota LLS, Brito JS, Ramos DBM et al (2019) Plant-derived lectins: a review of their status as alternatives to anticancer chemotherapy. In: Watanabe HS (ed) Horizons in Cancer Research, vol 73. Nova Science Publishers Inc., New York, pp 171–206

    Google Scholar 

  24. Silva LLS, Silva SCC, Oliveira APS et al (2021) Effects of a solid formulation containing lectin-rich fraction of Moringa oleifera seeds on egg hatching and development of Aedes aegypti larvae. Acta Trop 214:105789

  25. Procópio TF, Patriota LLS, Moura MC et al (2017) CasuL: a new lectin isolated from Calliandra surinamensis leaf pinnulae with cytotoxicity to cancer cells, antimicrobial activity and antibiofilm effect. Int J Biol Macromol 98:419–429. https://doi.org/10.1016/j.ijbiomac.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  26. Borsai O, Al HM, Boscaiu M et al (2018) The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity. EuroBiotech J 2:104–113. https://doi.org/10.2478/ebtj-2018-0014

    Article  Google Scholar 

  27. Silva JDF, Silva SP, Silva PM et al (2019) Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int J Biol Macromol 126:291–297. https://doi.org/10.1016/j.ijbiomac.2018.12.188

    Article  CAS  PubMed  Google Scholar 

  28. Paiva PMG, Coelho LCBB (1992) Purification and partial characterization of two lectin isoforms from Cratylia mollis Mart. (camaratu bean). Appl Biochem Biotechnol 36:113–118. https://doi.org/10.1007/BF02929691

    Article  CAS  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265–276. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  30. Green AA, Hughes WL (1955) Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. In: Colowick S, Kaplan N (eds) Methods in Enzymology. Academic Press, New York, pp 67–90

    Chapter  Google Scholar 

  31. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x

    Article  CAS  PubMed  Google Scholar 

  32. Reisfeld RA, Lewis UJ, Williams DE (1962) Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195:281–283. https://doi.org/10.1038/195281a0

    Article  CAS  PubMed  Google Scholar 

  33. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  34. Amsterdam D (1996) Susceptibility testing of antimicrobials in liquid media. In: Lorian V (ed) Antibiotics in Laboratory Medicine. Williams and Wilkins, Baltimore, pp 52–111

    Google Scholar 

  35. Braga AA, Lacerda RR, Medeiros GKVV et al (2015) Antibacterial and hemolytic activity of a new lectin purified from the seeds of Sterculia foetida L. Appl Biochem Biotechnol 175:1689–1699. https://doi.org/10.1007/s12010-014-1390-4

    Article  CAS  PubMed  Google Scholar 

  36. Organization for Economic Cooperation and Development (2001) OECD guideline for testing of chemicals. Guideline 423: Acute Oral Toxicity Acute Toxic Class Method. Organization for Economic Cooperation and Development, Paris

  37. Conybeare G, Leslie GB, Angles K, Barrett RJ, Luke JSH, Gask DR (1988) An improved simple technique for the collection of blood samples from rats and mice. Lab Anim 22:177–182. https://doi.org/10.1258/002367788780864529

    Article  CAS  PubMed  Google Scholar 

  38. Sá RA, Gomes FS, Napoleão TH et al (2009) Antibacterial and antifungal activities of Myracrodruon urundeuva heartwood. Wood Sci Technol 43:85–95. https://doi.org/10.1007/s00226-008-0220-7

    Article  CAS  Google Scholar 

  39. Napoleão TH, Gomes FS, Lima TA et al (2011) Termiticidal activity of lectins from Myracrodruon urundeuva against Nasutitermes corniger and its mechanisms. Int Biodeter Biodegr 65:52–59. https://doi.org/10.1016/j.ibiod.2010.05.015

    Article  CAS  Google Scholar 

  40. Coelho JS, Santos NDL, Napoleão TH et al (2009) Effect of Moringa oleifera lectin on development and mortality of Aedes aegypti larvae. Chemosphere 77:934–938. https://doi.org/10.1016/j.chemosphere.2009.08.022

    Article  CAS  PubMed  Google Scholar 

  41. Madhu CS, Balaji KS, Shankar J, Sharada AC (2019) Antitumor effects of chitin specific lectin from Praecitrullus fistulosus by targeting angiogenesis and apoptosis. Biochem Biophys Res Commun 518:381–387. https://doi.org/10.1016/j.bbrc.2019.08.067

    Article  CAS  PubMed  Google Scholar 

  42. Gomes FS, Procópio TF, Napoleão TH et al (2013) Antimicrobial lectin from Schinus terebinthifolius leaf. J Appl Microbiol 114:672–679. https://doi.org/10.1111/jam.12086

    Article  CAS  PubMed  Google Scholar 

  43. Silva PM, Moura MC, Gomes FS et al. (2018) PgTeL, the lectin found in Punica granatum juice, is an antifungal agent against Candida albicans and Candida krusei. Int J Biol Macromol 108, 391–400. https://doi.org/10.1016/j.ijbiomac.2017.12.039

  44. Moura MC, Napoleão TH, Coriolano MC et al (2015) Water-soluble Moringa oleifera lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria. J Appl Microbiol 119:666–676. https://doi.org/10.1111/jam.12882

    Article  CAS  PubMed  Google Scholar 

  45. Moura MC, Trentin DS, Napoleão TH et al (2017) Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti-adhesive properties. J Appl Microbiol 123:861–874. https://doi.org/10.1111/jam.13556

    Article  CAS  PubMed  Google Scholar 

  46. Coriolano MC, Brito JS, Ferreira GRS et al (2020) Antibacterial lectin from Moringa oleifera seeds (WSMoL) has differential action on growth, membrane permeability and protease secretory ability of Gram-positive and Gram-negative pathogens. South African J Bot 129:198–205. https://doi.org/10.1016/j.sajb.2019.06.014

    Article  CAS  Google Scholar 

  47. Santos LMM, Silva PM, Moura MC et al (2021) Anti-Candida activity of the water-soluble lectin from Moringa oleifera seeds (WSMoL). J Med Mycol 31:101074. https://doi.org/10.1016/j.mycmed.2020.101074

    Article  CAS  Google Scholar 

  48. Silva PM, Baldry M, Peng P et al (2019) Punica granatum sarcotesta lectin (PgTeL) impairs growth, structure, viability, aggregation, and biofilm formation ability of Staphylococcus aureus clinical isolates. Int J Biol Macromol 123:600–608. https://doi.org/10.1016/j.ijbiomac.2018.11.030

    Article  CAS  PubMed  Google Scholar 

  49. Moreira RDA, Perrone JC (1977) Purification and partial characterization of a lectin from Phaseolus vulgaris. Plant Physiol 59:783–787. https://doi.org/10.1104/pp.59.5.783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sousa FD, Silva BB, Furtado GP et al (2017) Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights. Biosci Rep 37:BSR20170969. https://doi.org/10.1042/BSR20170969

  51. Jacques AV, Rieger DK, Maestri M et al (2013) Lectin from Canavalia brasiliensis (ConBr) protects hippocampal slices against glutamate neurotoxicity in a manner dependent of PI3K/Akt pathway. Neurochem Int 62:836–842. https://doi.org/10.1016/j.neuint.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  52. Silva MCC, de Paula CAA, Ferreira JG et al (2014) Bauhinia forficata lectin (BfL) induces cell death and inhibits integrin-mediated adhesion on MCF7 human breast cancer cells. Biochim Biophys Acta - Gen Subj 1840:2262–2271. https://doi.org/10.1016/j.bbagen.2014.03.009

    Article  CAS  Google Scholar 

  53. Sudmoon R, Sattayasai N, Bunyatratchata W et al (2008) Thermostable mannose-binding lectin from Dendrobium findleyanum with activities dependent on sulfhydryl content. Acta Biochim Biophys Sin (Shanghai) 40:811–818. https://doi.org/10.1093/abbs/40.9.811

    Article  CAS  PubMed  Google Scholar 

  54. Cavada BS, Pinto-Junior VR, Osterne VJS et al (2020) A Diocleinae type II lectin from Dioclea lasiophylla Mart. Ex Benth seeds specific to α-lactose/GalNAc. Process Biochem 93:104–114. https://doi.org/10.1016/j.procbio.2020.03.026

    Article  CAS  Google Scholar 

  55. Brito JS, Ferreira GRS, Klimczak E et al (2017) Lectin from inflorescences of ornamental crop Alpinia purpurata acts on immune cells to promote Th1 and Th17 responses, nitric oxide release, and lymphocyte activation. Biomed Pharmacother 94:865–872. https://doi.org/10.1016/j.biopha.2017.08.026

    Article  CAS  Google Scholar 

  56. Silva HC, Bari AU, Pereira FN et al (2011) Purification and partial characterization of a new pro-inflammatory lectin from Bauhinia bauhinioides Mart (Caesalpinoideae) Seeds. Protein Pept Lett 18:396–402. https://doi.org/10.2174/092986611794653987

    Article  CAS  PubMed  Google Scholar 

  57. Silva HC, Pinto LS, Teixeira EH et al (2014) BUL: a novel lectin from Bauhinia ungulata L. seeds with fungistatic and antiproliferative activities. Process Biochem 49:203–209. https://doi.org/10.1016/j.procbio.2013.10.020

    Article  CAS  Google Scholar 

  58. Kenmochi E, Kabir S, Ogawa T et al (2015) Isolation and biochemical characterization of Apios Tuber Lectin. Molecules 20:987–1002. https://doi.org/10.3390/molecules20010987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Costa RB, Campana PT, Chambergo FS et al (2018) Purification and characterization of a lectin with refolding ability from Genipa americana bark. Int J Biol Macromol 119:517–523. https://doi.org/10.1016/j.ijbiomac.2018.07.178

    Article  CAS  PubMed  Google Scholar 

  60. Santos AFS, Luz LA, Argolo ACC et al (2009) Isolation of a seed coagulant Moringa oleifera lectin. Process Biochem 44:504–508. https://doi.org/10.1016/j.procbio.2009.01.002

    Article  CAS  Google Scholar 

  61. Bose PP, Bhattacharjee S, Singha S et al (2016) A glucose/mannose binding lectin from litchi (Litchi chinensis) seeds: biochemical and biophysical characterizations. Biochem Biophys Reports 6:242–252. https://doi.org/10.1016/j.bbrep.2016.05.001

    Article  Google Scholar 

  62. Dhuna V, Bains JS, Kamboj SS et al (2005) Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines. BMB Rep 38:526–532. https://doi.org/10.5483/BMBRep.2005.38.5.526

    Article  CAS  Google Scholar 

  63. Sitohy M, Doheim M, Badr H (2007) Isolation and characterization of a lectin with antifungal activity from Egyptian Pisum sativum seeds. Food Chem 104:971–979. https://doi.org/10.1016/j.foodchem.2007.01.026

    Article  CAS  Google Scholar 

  64. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer-Verlag, US, New York

    Book  Google Scholar 

  65. Khrustalev VV, Poboinev VV, Stojarov AN, Khrustaleva TA (2019) Microenvironment of tryptophan residues in proteins of four structural classes: applications for fluorescence and circular dichroism spectroscopy. Eur Biophys J 48:523–537. https://doi.org/10.1007/s00249-019-01377-0

    Article  CAS  PubMed  Google Scholar 

  66. Rosen CG, Weber G (1969) Dimer formation from 1-anilino-8-naphthalenesulfonate catalyzed by bovine serum albumin. Fluorescent molecule with exceptional binding properties. Biochemistry 8:3915–3920. https://doi.org/10.1021/bi00838a006

    Article  CAS  PubMed  Google Scholar 

  67. Dees MW, Lysøe E, Rossmann S et al (2017) Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 67:5222–5229. https://doi.org/10.1099/ijsem.0.002448

    Article  CAS  PubMed  Google Scholar 

  68. Costa RMPB, Vaz AFM, Oliva MLV et al (2010) A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochem 45:526–533. https://doi.org/10.1016/j.procbio.2009.11.013

    Article  CAS  Google Scholar 

  69. Ferreira GRS, Brito JS, Procópio TF et al (2018) Antimicrobial potential of Alpinia purpurata lectin (ApuL): growth inhibitory action, synergistic effects in combination with antibiotics, and antibiofilm activity. Microb Pathog 124:152–162. https://doi.org/10.1016/j.micpath.2018.08.027

    Article  CAS  PubMed  Google Scholar 

  70. Paiva PMG, Gomes FS, Napoleão TH et al (2010) Antimicrobial activity of secondary metabolites and lectins from plants. In: Méndez-Villas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Formatex Research Center, Badajoz, pp 396–406

  71. Neto JXT, Pereira ML, Oliveira JTA et al (2017) A chitin-binding protein purified from Moringa oleifera seeds presents anticandidal activity by increasing cell membrane permeability and reactive oxygen species production Front Microbiol 8 https://doi.org/10.3389/fmicb.2017.00980

  72. Candeiro GTM, Moura-Netto C, D’Almeida-Couto RS et al (2016) Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J 49:858–864. https://doi.org/10.1111/iej.12523

    Article  CAS  PubMed  Google Scholar 

  73. Su B, Guan Q, Yu S (2018) The neurotoxicity of nanoparticles: a bibliometric analysis. Toxicol Ind Health 34:922–929. https://doi.org/10.1177/07482337188049733

    Article  CAS  PubMed  Google Scholar 

  74. Haggard DE, Noyes PD, Waters KM, Tanguay RL (2016) Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 308:32–45. https://doi.org/10.1016/j.taap.2016.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang X, Ma Y, Liu J et al (2017) Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish (Danio rerio). Ecotoxicol Environ Saf 141:160–170. https://doi.org/10.1016/j.ecoenv.2017.02.042

    Article  CAS  PubMed  Google Scholar 

  76. Yanishi M, Kinoshita H, Tsukaguchi H et al (2019) The creatinine/cystatin C ratio provides effective evaluation of muscle mass in kidney transplant recipients. Int Urol Nephrol 51:79–83. https://doi.org/10.1007/s11255-018-2015-6

    Article  CAS  PubMed  Google Scholar 

  77. Galiza GJN, Pimentel LA, Oliveira DM et al (2011) Intoxicação por Portulaca elatior (Portulacaceae) em caprinos. Pesq Veter Bras 31:465–470. https://doi.org/10.1590/S0100-736X2011000600001

    Article  Google Scholar 

  78. Neto TSO, Correa FR, Barbosa FMS et al (2017) Intoxicação por Portulaca elatior (Portulacaceae) em bovinos. Pesq Veter Bras 37:785–789. https://doi.org/10.1590/s0100-736x2017000800001

    Article  Google Scholar 

Download references

Funding

The authors express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (407192/2018–2) and investigator research grants (PMGP and THN). We are also grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001) and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE: APQ 0108–2.08/14) for financial support. SPS would like to thank CAPES for graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Henrique Napoleão.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.P., da Silva, J.D.F., da Costa, C.B.L. et al. Purification, Characterization, and Assessment of Antimicrobial Activity and Toxicity of Portulaca elatior Leaf Lectin (PeLL). Probiotics & Antimicro. Prot. 15, 287–299 (2023). https://doi.org/10.1007/s12602-021-09837-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09837-w

Keywords

Navigation