Skip to main content
Log in

Detection Bioactive Metabolites of Fructobacillus fructosus Strain HI-1 Isolated from Honey Bee’s Digestive Tract Against Paenibacillus larvae

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

American foulbrood is a devastating disease of honey bee, causing economic loss in the beekeeping industry. The disease mainly causes reduction in honey bee populations which negatively affect the honey bee’s major role as natural pollinators of significant crops and wildflowers. Thus, it is crucial to develop safe efficient strategies to control the disease and to improve bee colony health. Using lactic acid bacteria (LAB) as an alternative to chemical treatments is a promising novel technique for tackling honey bee diseases and improving their immunity. The endogenous LAB isolates were recovered from honey bee gut samples collected from different apiaries in two Egyptian governorates and screened for antagonistic activities against Paenibacillus larvae (pathogen of AFB disease). The results showed that 53.3% of tested LAB isolates (n = 120) exhibited antagonistic activities against P. larvae. The minimum inhibitory concentration and minimum bactericidal concentration of the most potent LAB isolate (with an inhibition zone of 44 mm) were 100 and 125 µL/mL, respectively. 16S rRNA sequencing identified the most potent isolate as Fructobacillus fructosus HI-1. The bioactive metabolites of F. fructosus were extracted with ethyl acetate and fractionated on thin-layer chromatography (TLC); also, bioactive fractions were detected. Heptyl 2-methylbutyrate, di-isobutyl phthalate, d-turanose, heptakis (trimethylsilyl), di-isooctyl phthalate, and hyodeoxycholic acid compounds were identified in the bioactive fractions. The result explores the promising administration of probiotic metabolites to control honey bee AFB disease, as a natural tool to substitute antibiotics and chemicals in disease-controlling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data are available in the present paper.

References

  1. vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:S80–S95. https://doi.org/10.1016/j.jip.2009.06.011

    Article  PubMed  Google Scholar 

  2. Evans JD, Weaver DB (2003) Beenome soon: honey bees as a model non-model system for comparative genomics. Comp Funct Genomics 4(3):351–352. https://doi.org/10.1002/cfg.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kluser S, Neumann P, Chauzat MP, Pettis JS, Peduzzi P, Witt R et al (2010) Global honey bee colony disorders and other threats to insect pollinators. UNEP Emerg Issues. https://archive-ouverte.unige.ch/unige:32251

  4. Genersch E, Ashiralieva A, Fries I (2005) Strain-and genotype specific differences in virulence of Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in honeybees. Appl Environ Microbiol 71(11):7551–7555. https://doi.org/10.1128/AEM.71.11.7551-7555.2005

  5. Alippi AM, Albo GN, Reynaldi FJ, De Giusti MR (2005) In vitro and in vivo susceptibility of the honeybee bacterial pathogen Paenibacillus larvae subsp larvae to the antibiotic tylosin. Vet Microbiol 109(1–2):47–55. https://doi.org/10.1016/j.vetmic.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Shimanuki H (1997) Bacteria. In Morse RA, Flottum K (ed) Honey bee pests, predators, and diseases, 3rd edn. A.I. Root Co, Medina, Ohio, pp 35–54

  7. Bailey L, Ball BV (1991) Honey bee pathology. Academic Press, London, UK

    Google Scholar 

  8. Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5(3):307–317. https://doi.org/10.1111/j.1751-7915.2011.00312.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hussein MH (2000) A review of beekeeping in Arab countries. Bee World 81(2):56–71. https://doi.org/10.1080/0005772X.2000.11099473

    Article  Google Scholar 

  10. Heyndrickx M, Vandemeulebroecke K, Hoste B, Janssen P, Kersters K, De Vos P, Logan NA, Ali N, Berkeley RCW (1996) Reclassification of Paenibacillus (formerly Bacillus) pulvifaciens (Nakaumura 1984) Ash et al, 1994, a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1906) Ash et al, 1994, as a subspecies of P larvae, with emended descriptions of P. larvae as P. larvae subsp. larvae and P. larvae subsp. Pulvifaciens. Int J Syst Bacteriol 46(1):270–279. https://doi.org/10.1099/00207713-46-1-270

  11. Dobbelaere W, De Graaf DC, Reybroeck W, Desmedt E, Peeters JE, Jacobs JF (2001) Disinfection of wooden structures contaminated with Paenibacillus larvae subsp. larvae spores. J Appl Microbiol 91(2):212–216. https://doi.org/10.1046/j.1365-2672.2001.01376.x

  12. Lindström A (2008) Distribution of Paenibacillus larvae spores among adult honey bees (Apis mellifera) and the relationship with clinical symptoms of American foulbrood. Microb Ecol 56(2):100–110. https://doi.org/10.1007/s00248-007-9342-y

    Article  Google Scholar 

  13. De Graaf DC, De Vos M, Heyndrickx P, Van Trappen S, Peiren N, Jacobs FJ (2006) Identification of Paenibacillus larvae to the subspecies level: an obstacle for AFB diagnosis. J Invertebr Pathol 91(2):115–123. https://doi.org/10.1016/j.jip.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Okayama A, Sakogawa T, Nakajima C, Hayama T (1996) Biological properties and antibiotic susceptibility of Bacillus larvae originated from American foulbrood of honey bee in Japan. J. Vet Med Sci 58(5):439–441. https://doi.org/10.1292/jvms.58.439

    Article  CAS  PubMed  Google Scholar 

  15. Kochansky J, Knox DA, Feldlaufer M, Pettis JS (2001) Screening alternative antibiotics against oxytetracycline- susceptible and -resistant Paenibacillus larvae. Apidiologie 32(3):215–222. https://doi.org/10.1051/apido:2001123

    Article  CAS  Google Scholar 

  16. Peng CYS, Mussen E, Fong A, Cheng P, Wong G, Montague MA (1996) Laboratory and field studies on the effects of the antibiotic tylosin on honey bee Apis mellifera L. (Hymenoptera: Apidae) development and prevention of American foulbrood disease. J Invertebr Pathol 67(1):65–71. https://doi.org/10.1006/jipa.1996.0010

  17. Piccini C, Zunino P (2001) American foulbrood in Uruguay: isolation of Paenibacillus larvae larvae from larvae with clinical symptoms and adult honeybees and susceptibility to oxytetracycline. J Invertebr Pathol 78(3):176–177. https://doi.org/10.1006/jipa.2001.5055

    Article  CAS  PubMed  Google Scholar 

  18. Alippi AM, López AC, Reynaldi FJ, Grasso DH, Aguilar OM (2007) Evidence for plasmid-mediated tetracycline resistance in Paenibacillus larvae, the causal agent of American Foulbrood (AFB) disease in honeybees. Vet Microbiol 125(3–4):290–303. https://doi.org/10.1016/j.vetmic.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  19. Ueno Y, Yoshida E, Misumi W, Watando E, Suzuki K, Hirai Y, Okura M, Osaki M, Katsuda K, Takamatsu D (2018) Population structure and antimicrobial susceptibility of Paenibacillus larvae isolates from American foulbrood cases in Apis mellifera in Japan. Environ Microbiol Rep 10(2):210–216. https://doi.org/10.1111/1758-2229.12623

    Article  CAS  PubMed  Google Scholar 

  20. Aronstein KA, Hayes GW (2004) Antimicrobial activity of allicin against honeybee pathogens. J Apic Res 43(2):57–59. https://doi.org/10.1080/00218839.2004.11101111

    Article  CAS  Google Scholar 

  21. Fuselli SR, García de la Rosa SB, Gende LB, Eguaras MJ, Fritz R (2006) Inhibition of Paenibacillus larvae employing a mixture of essential oils and thymol. Rev Argent Microbiol 38(2):89–92

    CAS  PubMed  Google Scholar 

  22. Sevim E, Baş Y, Çelik G, Pinarbaş M, Bozdeveci A, Özdemir T, Akpinar R, Yayli N, Karaoğlu SA (2017) Antibacterial activity of bryophyte species against Paenibacillus larvae isolates. Turk J Vet Anim Sci 41(4):521–531. https://doi.org/10.3906/vet-1611-70

    Article  CAS  Google Scholar 

  23. Gallardo GL, Peňa NI, Chacana P, Terzolo HR, Cabrera GM (2004) L-Tenuazonic acid, a new inhibitor of Paenibacillus larvae. World J Microbiol Biotechnol 20(6):609–612. https://doi.org/10.1023/B:WIBI.0000043175.23621.8c

    Article  CAS  Google Scholar 

  24. Bastos EM, Simone M, Jorge DM, Soares AE, Spivak M (2008) In vitro study of the antimicrobial activity of Brazilian propolis against Paenibacillus larvae. J Invertebr Pathol 97(3):273–281. https://doi.org/10.1016/j.jip.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  25. Carson S, Bruff E, DeFoor W, Dums J, Groth A, Hatfield T, Iyer A, Joshi K, McAdams S, Miles D, Miller D, Oufkir A, Raynor B, Riley S, Roland S, Rozier H, Talley S, Miller ES (2015) Genome sequences of six Paenibacillus larvae siphoviridae phages. Genome Announc 3(3):e101-15. https://doi.org/10.1128/genomeA.00101-15

    Article  Google Scholar 

  26. Yost DG, Tsourkas P, Amy PS (2016) Experimental bacteriophage treatment of honeybees (Apis mellifera) infected with Paenibacillus larvae, the causative agent of American Foulbrood Disease. Bacteriophage 6(1):e1122698. https://doi.org/10.1080/21597081.2015.1122698

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brady TS, Merrill BD, Hilton JA, Payne AM, Stephenson MB, Hope S (2017) Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives. J Invertebr Pathol 150:94–100. https://doi.org/10.1016/j.jip.2017.09.010

    Article  PubMed  Google Scholar 

  28. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109:11002–11007. https://doi.org/10.1073/pnas.1202970109

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schachtschneider KM, Yeoman CJ, Isaacson RE, White BA, Schook LB, Pieters M (2013) Modulation of systemic immune responses through commensal gastrointestinal microbiota. PLoS One 8(1):e53969. https://doi.org/10.1371/journal.pone.0053969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nielsen P, Sørensen J (1997) Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22(3):183–192. https://doi.org/10.1111/j.1574-6941.1997.tb00370.x

    Article  CAS  Google Scholar 

  31. Rojo-Bezares B, Sáenz Y, Poeta P, Zarazaga M, Ruiz-Larrea F, Torres C (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int J Food Microbiol 111(3):234–240. https://doi.org/10.1016/j.ijfoodmicro.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  32. Forsgren E, Olofsson TC, Váasquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41(1):99–108. https://doi.org/10.1051/apido/2009065

    Article  Google Scholar 

  33. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. Plos One 7(7). https://doi.org/10.1371/annotation/3ac2b867-c013-4504-9e06-bebf3fa039d1

  34. Olofsson TC, Butler È, Markowicz P, Lindholm C, Larsson L, Vásquez A (2014) Lactic acid bacterial symbionts in honeybees-an unknown key to honey’s antimicrobial and therapeutic activities. Int Wound J 13(5):668–679. https://doi.org/10.1111/iwj.12345

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hamdy AA, Elattal NA, Amin MA, Ali AE, Mansour NM, Awad GEA, Awad HM, Esawy MA (2017) Possible correlation between levansucrase production and probiotic activity of Bacillus sp. isolated from honey and honey bee. World J Microbiol Biotechnol 33(4):69. https://doi.org/10.1007/s11274-017-2231-8

  36. Hamdy AA, Elattal NA, Amin MA, Ali AE, Mansour NM, Awad GEA, Farrag AH, Esawy MA (2018) In vivo assessment of possible probiotic properties of Bacillus subtilis and prebiotic properties of levan. Biocatal Agric Biotechnol 13:190–197. https://doi.org/10.1016/j.bcab.2017.12.001

    Article  Google Scholar 

  37. Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, Ricci I et al (2011) Gut microbiome dysbiosis and honeybee health. J Appl Entomol 135(7):524–533. https://doi.org/10.1111/j.1439-0418.2010.01609.x

    Article  Google Scholar 

  38. Audisio M, Benítez‐Ahrendts M (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee‐gut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2(1):29–34. https://doi.org/10.3920/BM2010.0024

  39. Nordström S, Fries I (1995) A comparison of media and cultural conditions for identification of Bacillus larvae in honey. J Apic Res 34(2):97–103. https://doi.org/10.1080/00218839.1995.11100894

    Article  Google Scholar 

  40. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  41. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akabanda F, Owusu-Kwarteng J, Tano-Debrah K, Parkouda C, Jespersen L (2014) The use of lactic acid bacteria starter culture in the production of Nunu, a spontaneously fermented milk product in Ghana. Int J Food Sci 2014:721067. https://doi.org/10.1155/2014/721067

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bauer AW, Kirby WM, Sherris JC, Truck M (1966) Antibiotic susceptibility testing by the standard single disk method. Am J Clin Pathol 45(4):493–496

    Article  CAS  PubMed  Google Scholar 

  44. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66(9):4084–4090. https://doi.org/10.1128/AEM.66.9.4084-4090.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu H, Qin S, Wang Y, Li W, Zhang J (2008) Insecticidal action of quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World J Microbiol Biotechnol 24(10):2243–2248. https://doi.org/10.1007/s11274-008-9736-0

  46. Sajid I, Yao CBFF, Shaaban KA, Hasnain S, Laatsch H (2009) Antifungal and antibacterial activities of indigenous Streptomyces isolates from saline farmlands: prescreening, ribotyping and metabolic diversity. World J Microbiol Biotechnol 25(4):601–610. https://doi.org/10.1007/s11274-008-9928-7

    Article  Google Scholar 

  47. Maruščáková IC, Schusterová P, Bielik B, Toporčák J, Bíliková K, Mudroňová D (2020) Effect of application of probiotic pollen suspension on immune response and gut microbiota of honey bees (Apis mellifera). Probiotics & Antimicro. Prot. 12:929–936. https://doi.org/10.1007/s12602-019-09626-6

    Article  Google Scholar 

  48. Vasileva T, Bivolarski V, Michailova G, Salim A, Rabadjiev Y, Ivanova I, Iliev I (2017) Glucansucrases produced by fructophilic lactic acid bacteria Lactobacillus kunkeei H3 and H25 isolated from honeybees. J Basic Microbiol 57(1):68–77. https://doi.org/10.1002/jobm.201600332

    Article  CAS  PubMed  Google Scholar 

  49. Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M, Dicks L, Salminen S (2018) Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl Environ Microbiol 84:e01290-18. https://doi.org/10.1128/AEM.01290-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramos OY, Basualdo M, Libonatti C, Vega MF (2020) Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. J Appl Microbiol 128(5):1248–1260. https://doi.org/10.1111/jam.14469

    Article  CAS  PubMed  Google Scholar 

  51. Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME Journal 8(12):2369–2379. https://doi.org/10.1038/ismej.2014.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honey bee Apis mellifera. Curr Microbiol 57(4):356–363. https://doi.org/10.1007/s00284-008-9202-0

    Article  CAS  PubMed  Google Scholar 

  53. Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8(12):e83125. https://doi.org/10.1371/journal.pone.0083125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Asama T, Arima TH, Gomi T, Keishi T, Tani H, Kimura Y, Tatefuji T, Hashimoto K (2015) Lactobacillus kunkeei YB38 from honeybee products enhances IgA production in healthy adults. J Appl Microbiol 119(3):818–826. https://doi.org/10.1111/jam.12889

    Article  CAS  PubMed  Google Scholar 

  55. Moran NA (2015) Genomics of the honey bee microbiome. Curr Opin Insect Sci 10:22–28. https://doi.org/10.1016/j.cois.2015.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  56. Baffoni L, Gaggìa F, Alberoni D, Cabbri R, Nanetti A, Biavati B, Di Gioia D (2016) Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benef Microbes 7(1):45–51. https://doi.org/10.3920/BM2015.0085

  57. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uğraş S (2017) Isolation, identification and characterization of probiotic properties of bacterium from the honey stomachs of Yigilca honeybees in Turkey. Turk Entomol Derg 41(3):253–261. https://doi.org/10.16970/ted.74860

  59. Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36(6):444–448. https://doi.org/10.1016/j.syapm.2013.06.002

    Article  PubMed  Google Scholar 

  60. Killer J, Dubná S, Sedláček I, Švec P (2014) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 64(1):152–157. https://doi.org/10.1099/ijs.0.053033-0

  61. Tlak Gajger I, Vlainić J, Šoštarić P, Prešern J, Bubnič J, Smodiš Škerl MI (2020) Effects on some therapeutical, biochemical, and immunological parameters of honey bee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. Insects 11(9):638. https://doi.org/10.3390/insects11090638

    Article  PubMed Central  Google Scholar 

  62. Ramachandran G, Rajivgandhi G, Maruthupandy M, Manoharan N (2019) Extraction and partial purification of secondary metabolites from endophytic actinomycetes of marine green algae Caulerpa racemosa against multi drug resistant uropathogens. Biocatal Agric Biotechnol 17:750–757. https://doi.org/10.1016/j.bcab.2019.01.016

    Article  Google Scholar 

  63. Crowley S, Mahony J, van Sinderen D (2013) Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Technol 33(2):93–109. https://doi.org/10.1016/j.tifs.2013.07.004

    Article  CAS  Google Scholar 

  64. Akpuaka A, Ekwenchi MM, Dashak DA, Dildar A (2013) Biological activities of characterized isolates of n-hexane extract of Azadirachta Indica A.Juss (Neem) leaves. Nat Sci 11(5):141–147

  65. Hong YP, Huang SH, Wu JC, Lin SQ (2010) Identification of essential oils from the leaves of 11 species of Eriobotrya. Pak J Bot 42(6):4379–4386

    CAS  Google Scholar 

  66. Nandhini SU, Sangareshwari S, Lata K (2015) Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asi J Pharm Clin Res 8(2):244–246

    CAS  Google Scholar 

  67. Shobi T, Viswanathan M (2018) Antibacterial activity of di-butyl phthalate isolated from Begonia malabarica. J Appl Biotechnol Bioeng 5(2):97–100‏. https://doi.org/10.15406/jabb.2018.05.00123

  68. Khalil NM, Shalaby EA, Ali DM, Ali EM, Aboul-Enein AM (2014) Biological activities of secondary metabolites from Emericella nidulans EGCU 312. Afr J Microbiol Res 8(20):2011–2021. https://doi.org/10.5897/AJMR2014.6827

    Article  CAS  Google Scholar 

  69. Belakhdar G, Benjouad A, Abdennebi EH (2015) Determination of some bioactive chemical constituents from Thesium humile Vahl. J Mater Environ Sci 6(10):2778–2783

    CAS  Google Scholar 

  70. Nxumalo CI, Ngidi LS, Shandu JSE, Maliehe TS (2020) Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complement Med Ther 20(1):1–11. https://doi.org/10.1186/s12906-020-03095-z

    Article  CAS  Google Scholar 

  71. Anju KM, Archana MM, Mohandas C, Nambisan BAL (2015) An antimicrobial phthalate derivative from Bacillus cereus, the symbiotic bacterium associated with a novel entomopathogenic nematode, Rhabditis (Oscheius) sp. Int J Pharm Pharm Sci 7:238–242

    CAS  Google Scholar 

  72. Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, Saladin R, Schoonjans K, Pellicciari R, Auwerx J (2008) Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure−activity relationships, and molecular modeling studies. J Med Chem 51(6):1831–1841. https://doi.org/10.1021/jm7015864

    Article  CAS  PubMed  Google Scholar 

  73. Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159(22):2647–2658. https://doi.org/10.1001/archinte.159.22.2647

    Article  CAS  PubMed  Google Scholar 

  74. Kim SH, Shin YK, Sohn YC, Kwon HC (2012) Two new cholic acid derivatives from the marine ascidian-associated bacterium Hasllibacter halocynthiae. Molecules 17(10):12357–12364. https://doi.org/10.3390/molecules171012357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pil GB, Won HS, Shin HJ (2016) Bile acids from a marine sponge-associated fungus Penicillium sp. J Korean Magn Reson Soc 20(2):41–45. https://doi.org/10.6564/JKMRS.2016.20.2.041

    Article  Google Scholar 

  76. Shi ZC, Zhao ZG, Liu XL, Chen Y (2011) Synthesis of new hyodeoxycholic acid thiosemicarbazone derivatives under solvent-free conditions using microwave. Chin Chem Lett 22(4):405–408. https://doi.org/10.1016/j.cclet.2010.10.020

    Article  CAS  Google Scholar 

  77. Li X, Jin C, Liu W, Zhou J, Kong W, Dai B, Wang J, Yan D, Zhao Y, Luo Y, Xiao X (2012) A microcalorimetric method to determine antimicrobial effects of two bile acid derivatives on Staphylococcus aureus. J Therm Anal Calorim 108(3):1293–1301. https://doi.org/10.1007/s10973-011-1436-6

    Article  CAS  Google Scholar 

  78. Watanabe M, Fukiya S, Yokota A (2017) Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. J Lipid Res 58(6):1143–1152. https://doi.org/10.1194/jlr.M075143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pachla A, Ptaszyńska AA, Wicha M, Oleńska E, Małek W (2019) Fascinating fructophilic lactic acid bacteria associated with various fructose-rich niches. Ann Univ Mariae Curie-Sklodowska, Sect C Biol 72(2):41–50

  80. Janashia I, Alaux C (2016) Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). J Econ Entomol 109(3):1474–1477. https://doi.org/10.1093/jee/tow065

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Samah N. Essa senior researcher, Pest Physiology Research Department, Plant Protection Research Institute, Agricultural Research Center, for her valuable help in identifying bioactive compounds. We would also like to thank Dr. Medhat Radi researcher, Pest Physiology Research Department, Plant Protection Research Institute, Agricultural Research Center, for construction the phylogenetic tree.

Author information

Authors and Affiliations

Authors

Contributions

Idea: Ibrahim A. Abou El-Khair. Conceptualization and supervision: Azza A. Abou Zeid; Ahmed M. Khattaby. Investigation: Hend I.A. Gouda. Methodology: Hend I.A. Gouda. Manuscript draft writing: Hend I.A. Gouda. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hend I. A. Gouda.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeid, A.A.A., Khattaby, A.M., El-Khair, I.A.A. et al. Detection Bioactive Metabolites of Fructobacillus fructosus Strain HI-1 Isolated from Honey Bee’s Digestive Tract Against Paenibacillus larvae. Probiotics & Antimicro. Prot. 14, 476–485 (2022). https://doi.org/10.1007/s12602-021-09812-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09812-5

Keywords

Navigation