Skip to main content
Log in

Lactobacillus fermentum MCC2759 and MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

A Correction to this article was published on 19 July 2023

This article has been updated

Abstract

The growing incidence of type 2 diabetes and obesity has become a worldwide crisis with increased socio-economic burden. Changes in lifestyle and food habits resulting in dysbiosis of the gut microbiota and low-grade inflammation are linked to the rising incidence. The aim of this study was to investigate the effects of potential probiotic Lactobacillus fermentum MCC2759 and MCC2760 on intestinal markers of inflammation using a high-fat diet (HFD)-fed model and a streptozotocin (STZ)-induced diabetic model. Lact. fermentum administration showed improved oral glucose tolerance compared with the model controls of HFD (AUC 1518) and STZ (628.8). Plasma insulin levels improved in the Lact. fermentum treated groups of HFD + MCC2759 (129 ± 4.24 pmol/L) and HFD + MCC2760 (151.5 ± 9.19 pmol/L) in HFD study, while in STZ diabetic study, the insulin levels were normalized with Lact. fermentum administration, for D + MCC2759 (120.5 ± 7.77) and D + MCC2760 (138 ± 5.65 pmol/L) groups. The results showed reduction in inflammatory tone in liver, muscle, and adipose tissues of rats in both models with stimulation of anti-inflammatory IL-10 by real-time quantitative polymerase chain reaction. Additionally, the potential probiotic cultures also displayed normalization of markers related to intestinal barrier integrity (ZO-1), TLR-4 receptor, and insulin sensitivity (GLUT-4, GLP-1, adiponectin). Thus, the results suggest that Lact. fermentum could act as potential probiotic for lifestyle-related disorders such as obesity, diabetes, and metabolic syndrome as both prophylactic and adjunct therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Gomes AC, Bueno AA, de Souza RGM, Mota JF (2014) Gut microbiota, probiotics and diabetes. Nutr J 13:60. https://doi.org/10.1186/1475-2891-13-60

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149. https://doi.org/10.1016/j.diabres.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, Ouwehand A (2011) Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 3:559–572. https://doi.org/10.1002/emmm.201100159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanti JF, Gual P, Gremeaux T, Gonzalez T, Barres R, Le Marchand-Brustel Y (2004) Alteration in insulin action: role of IRS-1 serine phosphorylation in the retroregulation of insulin signalling. In Annales d'endocrinologie 65(1): 43–48. Elsevier Masson. https://doi.org/10.1016/S0003-4266(04)95629-6

  5. Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol 19:349–359. https://doi.org/10.1016/j.tim.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  6. Cani PD, Delzenne NM, Amar J, Burcelin R (2008) Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol Biol (Paris) 56:305–309. https://doi.org/10.1016/j.patbio.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  7. Larsen N, Vogensen FK, Van Den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085. https://doi.org/10.1371/journal.pone.0009085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterol 143:913–916. https://doi.org/10.1053/j.gastro.2012.06.031

    Article  CAS  Google Scholar 

  9. He M, Shi B (2017) Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci 7:1–14. https://doi.org/10.1186/s13578-017-0183-1

    Article  CAS  Google Scholar 

  10. Hsu CL, Hou YH, Wang CS, Lin SW, Jhou BY, Chen CC, Chen YL (2019) Antiobesity and uric acid-lowering effect of Lactobacillus plantarum GKM3 in high-fat-diet-induced obese rats. J Am Coll Nutr 38:623–632. https://doi.org/10.1080/07315724.2019.1571454

    Article  CAS  PubMed  Google Scholar 

  11. Michael DR, Jack AA, Masetti G, Davies TS, Loxley KE, Kerry-Smith J, Plummer JF, Marchesi JR, Mullish BH, McDonald JAK, Hughes TR (2020) A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-60991-7

    Article  CAS  Google Scholar 

  12. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320. https://doi.org/10.1016/j.phrs.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  13. Archer AC, Halami PM (2015) Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products. Appl Microbiol Biotechnol 99:8113–8123. https://doi.org/10.1007/s00253-015-6679-x

    Article  CAS  PubMed  Google Scholar 

  14. Archer AC, Muthukumar SP, Halami PM (2015) Anti-inflammatory potential of probiotic Lactobacillus spp. on carrageenan induced paw edema in Wistar rats. Int J Biol Macromol 81:530–537. https://doi.org/10.1016/j.ijbiomac.2015.08.044

    Article  CAS  PubMed  Google Scholar 

  15. Archer AC, Kurrey NK, Halami PM (2018) In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp. J Appl Microbiol 125:243–256. https://doi.org/10.1111/jam.13757

    Article  CAS  PubMed  Google Scholar 

  16. Kang JH, Yun SI, Park HO (2010) Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J Microbiol 48:712–714. https://doi.org/10.1007/s12275-010-0363-8

    Article  PubMed  Google Scholar 

  17. Sanchez M, Darimont C, Drapeau V, Emady-Azar S, Lepage M, Rezzonico E, Ngom-Bru C, Berger B, Philippe L, Ammon-Zuffrey C, Leone P (2014) Effect of Lactobacillus rhamnosus CGMCC1. 3724 supplementation on weight loss and maintenance in obese men and women. Brit J Nutr 111:1507–1519. https://doi.org/10.1017/S0007114513003875

    Article  CAS  PubMed  Google Scholar 

  18. Singh S, Sharma RK, Malhotra S, Pothuraju R, Shandilya UK (2014) Assessment of gut associated changes and adipose tissue inflammation in high fat diet fed Streptozotocin-induced diabetic rats. J Innov Biol 1:068–077. 10.1.1.679.4353

  19. Li X, Wang N, Yin B, Fang D, Jiang T, Fang S, Zhao J, Zhang H, Wang G, Chen W (2016) Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice. J Appl Microbiol 121:1727–1736. https://doi.org/10.1111/jam.13276

    Article  CAS  PubMed  Google Scholar 

  20. Singh S, Sharma RK, Malhotra S, Pothuraju R, Shandilya UK (2017) Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocin treated rats. Benef Microbes 8:243–255. https://doi.org/10.3920/BM2016.0090

    Article  CAS  PubMed  Google Scholar 

  21. Yadav R, Dey DK, Vij R, Meena S, Kapila R, Kapila S (2018) Evaluation of anti-diabetic attributes of Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898 in streptozotocin induced diabetic rats. Microb Pathog 125:454–462. https://doi.org/10.1016/j.micpath.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  22. Costabile A, Buttarazzi I, Kolida S, Quercia S, Baldini J, Swann JR, Brigidi P, Gibson GR (2017) An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS ONE 12:e0187964. https://doi.org/10.1371/journal.pone.0187964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park S, Kang J, Choi S, Park H, Hwang E, Kang Y, Kim A, Holzapfel W, Ji Y (2018) Cholesterol-lowering effect of Lactobacillus rhamnosus BFE5264 and its influence on the gut microbiome and propionate level in a murine model. PLoS ONE 13:e0203150. https://doi.org/10.1371/journal.pone.0203150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A (2006) Inflammatory process in type 2 diabetes: the role of cytokines. Ann N Y Acad Sci 1084:89–117. https://doi.org/10.1196/annals.1372.039

    Article  CAS  PubMed  Google Scholar 

  25. Zarfeshani A, Khaza’ai H, Ali RM, Hambali Z, Wahle KWJ, Mutalib MSA (2011) Effect of Lactobacillus casei on the production of pro-inflammatory markers in streptozotocin-induced diabetic rats. Probiotics Antimicrob Proteins 3:168–174. https://doi.org/10.1007/s12602-011-9080-9

    Article  CAS  PubMed  Google Scholar 

  26. Mencarelli A, Cipriani S, Renga B, Bruno A, D'Amore C, Distrutti E, Fiorucci S (2012) VSL# 3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PloS One 7:p.e45425. https://doi.org/10.1371/journal.pone.0045425

  27. Liu Y, Gao Y, Ma F, Sun M, Mu G, Tuo Y (2020) The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed by high fat diet. Food Funct 11:5024–5039. https://doi.org/10.1039/D0FO00439A

    Article  CAS  PubMed  Google Scholar 

  28. Kufer TA, Sansonetti PJ (2011) NLR functions beyond pathogen recognition. Nat Immunol 12:121–128. https://doi.org/10.1038/ni.1985

    Article  CAS  PubMed  Google Scholar 

  29. Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:279–288. https://doi.org/10.4161/gmic.19625

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA (2012) Differential targeting of the E-cadherin/β-catenin complex by Gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol 78:1140–1147. https://doi.org/10.1128/AEM.06983-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herman MA, Kahn BB (2006) Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Investig 116:1767–1775. https://doi.org/10.1172/JCI29027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim SW, Park KY, Kim B, Kim E, Hyun CK (2013) Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Comm 431:258–263. https://doi.org/10.1016/j.bbrc.2012.12.121

    Article  CAS  PubMed  Google Scholar 

  33. Lihn AS, Pedersen SB, Richelsen B (2005) Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 6:13–21. https://doi.org/10.1111/j.1467-789X.2005.00159.x

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh FC, Lee CL, Chai CY, Chen WT, Lu YC, Wu CS (2013) Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metabol 10:35. https://doi.org/10.1186/1743-7075-10-35

    Article  CAS  Google Scholar 

  35. Sharavana G, Joseph GS, Baskaran V (2017) Lutein attenuates oxidative stress markers and ameliorates glucose homeostasis through polyol pathway in heart and kidney of STZ-induced hyperglycemic rat model. Eur J Nutr 56(8):2475–2485. https://doi.org/10.1007/s00394-016-1283-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to Director, CSIR-CFTRI, Mysuru, for providing the necessary facilities.

Funding

The research leading to these results received funding from Indian Council of Medical Research (ICMR) under Grant Agreement No. 5/7/508/10-RHN. ACA received grant from Maulana Azad National Fellowship by University Grants Commission (UGC), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ann Catherine Archer. The first draft of the manuscript was written by Ann Catherine Archer, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prakash Motiram Halami.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval

All procedures performed in studies involving human participants were in accordance with guidelines of Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India and approved by the Institute Animal Ethical Committee (IAEC), CSIR-CFTRI, Mysuru, in accordance with IAEC regulations (approval no. 335/14).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to Retrospective Open Access cancellation.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archer, A.C., Muthukumar, S.P. & Halami, P.M. Lactobacillus fermentum MCC2759 and MCC2760 Alleviate Inflammation and Intestinal Function in High-Fat Diet-Fed and Streptozotocin-Induced Diabetic Rats. Probiotics & Antimicro. Prot. 13, 1068–1080 (2021). https://doi.org/10.1007/s12602-021-09744-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09744-0

Keywords

Navigation