Skip to main content
Log in

Lactobacillus plantarum BSGP201683 Improves the Intestinal Barrier of Giant Panda Microbiota-Associated Mouse Infected by Enterotoxigenic Escherichia coli K88

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Giant pandas often suffered from gastrointestinal disease, especially the captive sub-adult one. Our study aims to investigate whether L. plantarum G83, a good panda-derived probiotic, can improve the intestinal barrier against the enterotoxigenic Escherichia coli K88 (E. coli K88) infection in giant panda microbiota-associated mice (GPAM). We treated SPF mice with antibiotics cocktail and transplanted the giant panda intestinal microbiota to set up a GPAM. Our results demonstrated that the microbiota of GPAM changed over time and was relatively stable in the short-term experiment (2–4 weeks). Whereafter, the GPAM pretreated with L. plantarum G83 for 15 days and infected with enterotoxigenic E. coli K88. The result indicated that the number of Bifidobacteria spp. increased in GPAM-G and GPAM-GE groups; the Lactobacillus spp. only increased in the GPAM-G group. Although the abundance of Enterobacteriaceae spp. only decreased in the GPAM-G group, the copy number of Escherichia coli in the GPAM-E group was significantly lower than that in the other groups. Meanwhile, the L. plantarum G83-induced alteration of microbiota could increase the mRNA expression of Claudin-1, Zo-1, and Occludin-1 in the GPAM-G group in the ileum; only Occludin-1 was increased in the GPAM-GE group. The sIgA in the ileum showed a positive response, also the result of body weight and histology in both the GPAM-G and GPAM-GE group. These results indicated that the L. plantarum G83 could improve the intestinal barrier to defense the enterotoxigenic E. coli K88 invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ren L, Deng LH, Zhang RP, Wang CD, Li DS, Xi LX, Chen ZR, Yang R, Huang J, Zeng YR (2017) Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung. Medicine 96(7):e5922. https://doi.org/10.1097/MD.0000000000005922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qiu X, Mainka SA (1993) Review of mortality of the giant panda (Ailuropoda melanoleuca). J Zoo Wildl Med 24(4):425–429 www.jstor.org/stable/20095301

    Google Scholar 

  3. Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, Zhang X, Huang H, Bridgewater LC, Jiang Y (2015) The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. Mbio 6(3):00022–00015. https://doi.org/10.1128/mBio.00022-15

    Article  CAS  Google Scholar 

  4. Tingmei H, Tingting C, Zhijun Z, Chengdong W, Yongguo H, Yi W, Hemin Z, Desheng L, Caiwu L, Tingting Z, Yongjiu L, Anchun C, Guangneng P (2013) Research on diversity of intestinal flora in an adult giant panda based on the 16s rDNA-RFLP. Chin Vet Sci 42(11):1121–1127. https://doi.org/10.16656/j.issn.1673-4696.2012.11.019

    Article  Google Scholar 

  5. Yongguo H, Lei J, Guo L, Caiwu L, Bei L, Wei L, Yahui Z, Zhengquan H, Yan H, Heming Z, Likou Z (2017) Gut microbiome of adult giant pandas based on high-throughput sequencing technology. Chin J of Appl Environ Biol 23(5):771–777. https://doi.org/10.3724/SP.J.1145.2016.05023

    Article  Google Scholar 

  6. Zhang A, Wang H, Tian G, Zhang Y, Yang X, Xia Q, Tang J, Zou L (2009) Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. Int J Antimicrob Ag 33(5):456–460. https://doi.org/10.1016/j.ijantimicag.2008.10.030

    Article  CAS  Google Scholar 

  7. Zhang M, Zhang Z, Li Z, Hong M, Zhou X, Zhou S, Zhang J, Hull V, Huang J, Zhang H (2018) Giant panda foraging and movement patterns in response to bamboo shoot growth. Environ Sci Pollut Res Int 25(9):8636–8643. https://doi.org/10.1007/s11356-017-0919-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seres DS, Van Way CW (2015) Nutrition support for the critically ill. Curr Opin Gastroenterol 29(2):208–215. https://doi.org/10.1097/MOG.0b013e32835c9c83

    Article  CAS  Google Scholar 

  9. Bastani P, Akbarzadeh F, Homayouni A, Javadi M, Khalili L (2016) Health benefits of probiotic consumption. In: Garg N, Abdel-Aziz S, Aeron A (eds) Microbes in food and health. Springer, Cham. https://doi.org/10.1007/978-3-319-25277-3_9

    Chapter  Google Scholar 

  10. Shang Q, Shan X, Cai C, Hao J, Li G, Yu G (2016) Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct 7(7):3224–3232. https://doi.org/10.1039/c6fo00309e

    Article  CAS  PubMed  Google Scholar 

  11. Balda MS, Matter K (2008) Tight junctions at a glance. J Cell Sci 121(22):3677–3682. https://doi.org/10.1242/jcs.023887

    Article  CAS  PubMed  Google Scholar 

  12. Feldman GJ, Mullin JM, Ryan MP (2005) Occludin: structure, function and regulation. Adv Drug Deliv Rev 57(6):883–917. https://doi.org/10.1016/j.addr.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  13. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126(4):741–754. https://doi.org/10.1016/j.cell.2006.06.043

    Article  CAS  PubMed  Google Scholar 

  14. Sánchez de Medina F, Romero-Calvo I, Mascaraque C, Martínez-Augustin O (2014) Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 20(12):2394–2404. https://doi.org/10.1097/mib.0000000000000204

    Article  PubMed  Google Scholar 

  15. Sun H, Bi J, Lei Q, Wan X, Jiang T, Wu C, Wang X (2018) Partial enteral nutrition increases intestinal sIgA levels in mice undergoing parenteral nutrition in a dose-dependent manner. Int J Surg 49:74–79. https://doi.org/10.1016/j.ijsu.2017.12.011

    Article  PubMed  Google Scholar 

  16. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A (2017) Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res 61(1):1600240. https://doi.org/10.1002/mnfr.201600240

    Article  CAS  Google Scholar 

  17. Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy J-M, Dequenne I, de Timary P, Cani PD (2020) How probiotics affect the microbiota. Front Cell Infect Microbiol 9:454. https://doi.org/10.3389/fcimb.2019.00454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang J, Ji H, Wang S, Liu H, Zhang W, Zhang D, Wang Y (2018) Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol 9:1953. https://doi.org/10.3389/fmicb.2018.01953

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Li L, Lv Y, Chen Q, Feng J, Zhao X (2018) Lactobacillus plantarum restores intestinal permeability disrupted by Salmonella infection in newly-hatched chicks. Sci Rep 8(1):2229. https://doi.org/10.1038/s41598-018-20752-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, Roy NC (2010) Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10(1):316. https://doi.org/10.1186/1471-2180-10-316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zihni C, Mills C, Matter K, Balda MS (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 17(9):564–580. https://doi.org/10.1038/nrm.2016.80

    Article  CAS  PubMed  Google Scholar 

  22. Wang P, Li Y, Xiao H, Shi Y, Gw L, Sun J (2016) Isolation of Lactobacillus reuteri from Peyer’s patches and their effects on sIgA production and gut microbiota diversity. Mol Nutr Food Res 60(9):2020–2030. https://doi.org/10.1002/mnfr.201501065

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, Ni X, Wang Q, Peng Z, Niu L, Xie M, Lin Y, Zhou Y, Sun H, Pan K (2019) Investigation of lactic acid bacteria isolated from giant panda feces for potential probiotics in vitro. Probiotics Antimicrob Proteins 11(1):85–91. https://doi.org/10.1007/s12602-017-9381-8

    Article  CAS  PubMed  Google Scholar 

  24. Liu Q, Ni X, Wang Q, Peng Z, Niu L, Wang H, Zhou Y, Sun H, Pan K, Jing B (2017) Lactobacillus plantarum BSGP201683 isolated from giant panda feces attenuated inflammation and improved gut microflora in mice challenged with enterotoxigenic Escherichia coli. Front Microbiol 8:1885. https://doi.org/10.3389/fmicb.2017.01885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng B, Li G, Yuan J, Li W, Tang H, Wei H (2013) Effects of age and strain on the microbiota colonization in an infant human flora-associated mouse model. Curr Microbiol 67(3):313–321. https://doi.org/10.1007/s00284-013-0360-3

    Article  CAS  PubMed  Google Scholar 

  26. Dal Bello F, Walter J, Hertel C, Hammes WP (2001) In vitro study of prebiotic properties of Levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol 24(2):232–237. https://doi.org/10.1078/0723-2020-00033

    Article  CAS  Google Scholar 

  27. Qing X, Zeng D, Wang H, Ni X, Liu L, Lai J, Khalique A, Pan K, Jing B (2017) Preventing subclinical necrotic enteritis through Lactobacillus johnsonii BS15 by ameliorating lipid metabolism and intestinal microflora in broiler chickens. AMB Express 7(1):139. https://doi.org/10.1186/s13568-017-0439-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brandt LJ, Aroniadis OC, Mellow M, Kanatzar A, Kelly C, Park T, Stollman N, Rohlke F, Surawicz C (2012) Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol 107(7):1079–1087. https://doi.org/10.1038/ajg.2012.60

    Article  PubMed  Google Scholar 

  29. Zhang X, Zeng B, Liu Z, Liao Z, Li W, Wei H, Fang X (2014) Comparative diversity analysis of gut microbiota in two different human flora-associated mouse strains. Curr Microbiol 69(3):365–373. https://doi.org/10.1007/s00284-014-0592-x

    Article  CAS  PubMed  Google Scholar 

  30. Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22(6):458–478. https://doi.org/10.1016/j.molmed.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13(11):790–801. https://doi.org/10.1038/nri3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N (2016) Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res 14(2):127–138. https://doi.org/10.5217/ir.2016.14.2.127

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghoshal UC, Ghoshal U (2017) Small intestinal bacterial overgrowth and other intestinal disorders. Gastroenterol Clin N Am 46(1):103–120. https://doi.org/10.1016/j.gtc.2016.09.008

    Article  Google Scholar 

  34. Blanchi J, Goret J, Mégraud F (2016) Clostridium difficile infection: a model for disruption of the gut microbiota equilibrium. Dig Dis 34(3):217–220. https://doi.org/10.1159/000443355

    Article  PubMed  Google Scholar 

  35. Bien J, Palagani V, Bozko P (2013) The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Ther Adv Gastroenterol 6(1):53–68. https://doi.org/10.1177/1756283X12454590

    Article  Google Scholar 

  36. Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, Bernalier-Donadille A, Denis S, Hofman P, Bonnet R (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. Sci Rep 6(19032):1–8. https://doi.org/10.1038/srep19032

    Article  CAS  Google Scholar 

  37. Guo W, Mishra S, Zhao J, Tang J, Zeng B, Kong F, Ning R, Li M, Zhang H, Zeng Y (2018) Metagenomic study suggests that the gut microbiota of the giant panda (Ailuropoda melanoleuca) may not be specialized for fiber fermentation. Front Microbiol 9:229. https://doi.org/10.3389/fmicb.2018.00229

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guo L, Long M, Huang Y, Wu G, Deng W, Yang X, Li B, Meng Y, Cheng L, Fan L (2015) Antimicrobial and disinfectant resistance of Escherichia coli isolated from giant pandas. J Appl Microbiol 119(1):55–64. https://doi.org/10.1111/jam.12820

    Article  CAS  PubMed  Google Scholar 

  39. Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125(3):286–292. https://doi.org/10.1016/j.ijfoodmicro.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  40. Collado MC, Grześkowiak Ł, Salminen S (2007) Probiotic strains and their combination inhibit in vitro adhesion of pathogens to pig intestinal mucosa. Curr Microbiol 55(3):260–265. https://doi.org/10.1007/s00284-007-0144-8

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki C, Kimoto-Nira H, Kobayashi M, Nomura M, Sasaki K, Mizumachi K (2008) Immunomodulatory and cytotoxic effects of various Lactococcus strains on the murine macrophage cell line J774.1. Int J Food Microbiol 123(1): 159–165. https://doi.org/10.1016/j.ijfoodmicro.2007.12.022

  42. Kimoto H, Mizumachi K, Okamoto T, J-i K (2013) New Lactococcus strain with immunomodulatory activity: enhancement of Th1-type immune response. Microbiol Immunol 48(2):75–82. https://doi.org/10.1111/j.1348-0421.2004.tb03490.x

    Article  Google Scholar 

  43. Zhang L, Xu YQ, Liu HY, Lai T, Ma JL, Wang JF, Zhu YH (2010) Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol 141(1–2):142–148. https://doi.org/10.1016/j.vetmic.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  44. Liu Q, Ni X, Wang Q, Peng Z, Niu L, Xie M, Lin Y, Zhou Y, Sun H, Pan K (2018) Investigation of lactic acid bacteria isolated from giant panda feces for potential probiotics In Vitro. Probiotics Antimicrob Proteins 11(1): 85–91. https://doi.org/10.1007/s12602-017-9381-8

  45. Yang F, Wang A, Zeng X, Hou C, Liu H, Qiao S (2015) Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol 15(1):32. https://doi.org/10.1186/s12866-015-0372-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noth R, Lange-Grumfeld J, Stüber E, Kruse ML, Ellrichmann M, Häsler R, Hampe J, Bewig B, Rosenstiel P, Schreiber S (2011) Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model. BMC Gastroenterol 11(1):109. https://doi.org/10.1186/1471-230X-11-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barreau F, Hugot J (2014) Intestinal barrier dysfunction triggered by invasive bacteria. Curr Opin Microbiol 17:91–98. https://doi.org/10.1016/j.mib.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  48. Cording J, Berg J, Käding N, Bellmann C, Tscheik C, Westphal JK, Milatz S, Günzel D, Wolburg H, Piontek J (2013) In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci 126(2):554–564. https://doi.org/10.1242/jcs.114306

    Article  CAS  PubMed  Google Scholar 

  49. Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, Panchakshari RA, Rodig SJ, Kepler TB, Alt FW (2013) Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 501(7465):112–115. https://doi.org/10.1038/nature12496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaetzel CS (2014) Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host–microbial mutualism. Immunol Lett 162(2):10–21. https://doi.org/10.1016/j.imlet.2014.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, Cahenzli J, Velykoredko Y, Balmer ML, Endt K (2010) Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328(5986):1705–1709. https://doi.org/10.1126/science.1188454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Macpherson AJ, Köller Y, McCoy KD (2015) The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol 36(8):460–470. https://doi.org/10.1016/j.it.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  53. Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M, McDonald BD, Ishizuka IE, Dent AL, Wilson PC, Jabri B (2015) Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43(3): 541–553. https://doi.org/10.1016/j.immuni.2015.08.007

  54. Pabst O, Cerovic V, Hornef M (2016) Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends Immunol 37(5):287–296. https://doi.org/10.1016/j.it.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  55. Palm NW, De Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, Degnan PH, Hu J, Peter I, Zhang W (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158(5):1000–1010. https://doi.org/10.1016/j.cell.2014.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mirpuri J, Raetz M, Sturge CR, Wilhelm CL, Benson A, Savani RC, Hooper LV, Yarovinsky F (2014) Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 5(1):28–39. https://doi.org/10.4161/gmic.26489

    Article  PubMed  Google Scholar 

Download references

Funding

The present study supported by the National Natural Science Foundation of China (31970503), the Chengdu Giant Panda Breeding Research Foundation (CPF2014-15), and the China Scholarship Council (201906910016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

The experiment approved and supervised under the Institutional Animal Care and Use Committee of Sichuan Agricultural University (No. SYXKchuan 2014-187).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi Zhoua, Xueqin Nia, and Ling Duan are Joint first authors

Supplementary information

ESM 1

(DOCX 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ni, X., Duan, L. et al. Lactobacillus plantarum BSGP201683 Improves the Intestinal Barrier of Giant Panda Microbiota-Associated Mouse Infected by Enterotoxigenic Escherichia coli K88. Probiotics & Antimicro. Prot. 13, 664–676 (2021). https://doi.org/10.1007/s12602-020-09722-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09722-y

Keywords

Navigation