Skip to main content
Log in

Gulf of Urabá (Caribbean Colombia), a Tropical Estuary: A Review with Some General Lessons About How it Works

  • Review
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

Estuaries are highly diverse ecosystems that occur at the interface between land and sea and thus possess a high degree of environmental variation over short spatial and temporal scales. The Gulf of Urabá (1800 km 2; mean depth ~ 40 m) is a semiclosed estuarine area located in the southwestern part of the Caribbean Sea (South America). This large coastal–estuarine ecosystem operates as a biogeochemical reactor due to it featuring examples of high nutrient concentrations on the surface (NO 3- = 1619 μM; NO 2- = 0.505 μM; NH 4+  = 2.938 μM; PO 4 3- = 7.603 μM), high Chl α (max = 30.17; min = 0.02; mean = 9 mg m−3), as well as blooms of toxic algae, mostly Pseudo-nitzschia pseudodelicatissima. An outbreak of Tripos fusus causes bioluminescence and about 20 events of hypoxia (< 2–4 mg O 2 L−1) within a time series of 10 years. Despite this, information regarding the biological and biogeochemical oceanography (chlorophyll α, biomass, planktonic composition, nutrient cycling, mass balance of elements, and interannual variability) remains non-existent. Therefore, elucidating an ecosystem’s thresholds for various features is necessary for managing marine ecosystems, and especially for climate change projections. We here present a review of the functioning of this estuary, evaluating and reviewing each aspect of oceanographic variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Source: REDCAM database

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data are available in/from:

REDCAM – For temperature, salinity, oxygen and pH data.

IDEAM – For river flow, precipitation and evaporation data.

CMEMS – For Chlorophyll and marine currents data.

ERA 5 – For wind speed data.

OCA – For temperature, salinity and density data (profiles).

Phytoplankton data are not openly available because they are being used for an identification catalog under construction.

References

  • Andrade C (2015) Oceanografía dinámica de la cuenca de Colombia. Escuela Naval de Cadetes “Almirante Padilla”, Cartagena de Indias, p 201

  • Andrade CA, Rangel OE, Herrera E, Palomino A, Herrera (2015) Atlas de los datos Oceanográficos de Colombia 1922–2013. Dirección General Marítima, Cartagena de Indias, p 116. https://doi.org/10.26640/22159045.275

  • Arroyave-Rincón A, Blanco JF, Taborda A (2012) Sediment exports from the eastern basin in the Gulf of Urabá: climatic and anthropogenic influences. Rev Ing Univ Medellín 11:13–30

    Google Scholar 

  • Ayala-Serrano T, Márquez-Palencia V (2017) Clorofila-a como indicador de calidad de agua en el área de influencia de rio Atrato entre octubre 2015 y agosto 2016, Golfo de Urabá—Caribe colombiano. University of Antioquia

    Google Scholar 

  • Bernal G, Montoya L, Garizábal C, Toro M (2005) La complejidad de la dimensión física en la problemática costera del golfo de Urabá, Colombia. Gest Ambient 8:123–135

    Google Scholar 

  • Blanco JF, Londoño MH, Correa ID, Osorio AF, Bernal GR, Polanía JH, Urrego LE (2013) Exploración del Golfo de Urabá 2007–2013. University of Antioquia, p 59

    Google Scholar 

  • Blanco-Libreros JF (2009) Banana crop expansion and increased river-borne sediment exports to the gulf of Urabá, Caribbean coast of Colombia. Ambio 38:181–183. https://doi.org/10.1579/0044-7447-38.3.181

    Article  Google Scholar 

  • Blanco-Libreros JF, Londoño-Mesa MH (2016) Expedición Caribe sur: antioquia y Chocó costeros. Comisión Colombiana del Océano, p 323

    Google Scholar 

  • Bonilla NS (2020) Comunidad fitoplanctónica presente en el Golfo de Urabá 2018. v.1.0 Instituto de Investigaciones Ambientales del Pacifico John Von Neumann (IIAP). Dataset/occurrence. https://doi.org/10.15472/r1ln4m

    Article  Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27. https://doi.org/10.1007/BF02732750

    Article  Google Scholar 

  • Brunton E (1994) The challenger expedition, 1872–1876: a visual index. Natural History Museum, London, p 289. https://doi.org/10.5962/bhl.title.87402

    Book  Google Scholar 

  • Calderón Y (2019) Variabilidad espacio-temporal del potencial energético salino por medio de mediciones in situ en el golfo de Urabá, mar Caribe colombiano. University of Antioquia

    Google Scholar 

  • Centurioni L, Niiler P (2003) On the surface currents of the Caribbean Sea. Geophys Res Lett 30:1279. https://doi.org/10.1029/2002GL016231

    Article  Google Scholar 

  • Chevillot P, Molina A, Giraldo L, Molina C (1993) Estudio geológico e hidrológico del Golfo de Urabá. Bol Cient CIOH 14:79–90. https://doi.org/10.26640/22159045.62

    Article  Google Scholar 

  • Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11:2477–2501. https://doi.org/10.5194/bg-11-2477-2014

    Article  Google Scholar 

  • Córdoba-Mena N, Florez-Leiva L, Atehortúa L, Obando E (2020) Changes in phytoplankton communities in a tropical estuary in the Colombian Caribbean Sea. Estuar Coast 43:2106–2127. https://doi.org/10.1007/s12237-020-00750-z

    Article  Google Scholar 

  • Coronado-Franco KV, Selvaraj JJ, Mancera Pineda JE (2018) Algal blooms detection in Colombian Caribbean Sea using MODIS imagery. Mar Pollut Bull 133:791–798. https://doi.org/10.1016/j.marpolbul.2018.06.021

    Article  Google Scholar 

  • Cuesta-Córdoba CC (2017) Distribución espacial y temporal del zooplancton según el gradiente de salinidad en el brazo Leoncito y la bahía Marirrío (delta del río Atrato). University of Antioquia

    Google Scholar 

  • de Lacerda LD, Santelli RE, Abrao JJ, Duursma EK (2004) Environmental geochemistry in tropical and subtropical environments. In: Restrepo JD, Kjerfve B (eds) The Pacific and Caribbean rivers of Colombia: water discharge, sediment transport and dissolved loads. Springer, Berlin, Heidelberg, pp 169–187

    Google Scholar 

  • Echeverry A (2012) Diatomeas en sedimentos superficiales del golfo de Urabá, Caribe colombiano. University of Antioquia

    Google Scholar 

  • Escobar CA (2011) Relevancia de procesos costeros en la hidrodinámica del Golfo de Urabá (Caribe Colombiano). Bol Invest Mar Cost 40:327–346

    Google Scholar 

  • Escobar CA, Velásquez L, Posada F (2015) Marine currents in the Gulf of Urabá, Colombian Caribbean Sea. J Coastal Res 31:1363–1374. https://doi.org/10.2112/JCOASTRES-D-14-00186.1

    Article  Google Scholar 

  • Espinosa-Díaz LF, Zapata-Rey YT, Ibarra-Gutierrez K, Bernal CA (2021) Spatial and temporal changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: two decades of monitoring. Sci Total Environ 785:147203. https://doi.org/10.1016/j.scitotenv.2021.147203

    Article  Google Scholar 

  • Francois Y, García C, Cesaraccio M, Rojas X (2007) Atlas del golfo de Urabá: una mirada al Caribe de Antioquía y Chocó. In: García-Valencia C (ed) El paisaje en el golfo. INVEMAR, Santa Marta, pp 75–128

    Google Scholar 

  • García-Valencia C (2007) Atlas del golfo de Urabá: una mirada al Caribe de Antioquia y Chocó. Publicaciones Especiales de Invemar No. 12, Santa Marta, p 180

  • Gocke K, Meyerhöfer M, Mancera-Pineda JE, Vidal LA (2003) Phytoplankton composition in coastal lagoons of different trophic status in northern Colombia determined by microscope and HPLC-pigment analysis. Bol Invest Mar Cost 32:263–278. https://doi.org/10.25268/bimc.invemar.2003.32.0.270

    Article  Google Scholar 

  • Hernández CA, Gocke K (1990) Productividad primaria en la Ciénaga Grande de Santa Marta, Colombia. Bol Invest Mar Cost 19–20:101–119. https://doi.org/10.25268/bimc.invemar.1990.19.0.430

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi KL, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Payne A, Seneviratne SI, Thomas A, Warren R, Zhou G (2018) Impacts of 1.5 ºC Global Warming on Natural and Human Systems. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC

  • Jiménez GA, Campillo LL (2020) Caracterización termohalina de las masas de agua del golfo de Urabá. Caso específico desembocadura del río León y el río Atrato. University of Antioquia

    Google Scholar 

  • Johns WE, Townsend TL, Fratantoni SM, Wilson WD (2002) On the Atlantic inflow to the Caribbean Sea. Deep-Sea Res Pt I 49:211–243. https://doi.org/10.1016/S0967-0637(01)00041-3

    Article  Google Scholar 

  • Jurado A (2019) Análisis de la variabilidad estacional en la productividad primaria a partir de la determinación de la clorofila-a en aguas superficiales del sector sur del golfo de Urabá. University of Antioquia

    Google Scholar 

  • Li M, Li R, Cai WJ, Testa JM, Shen C (2020) Effects of wind-driven lateral upwelling on estuarine carbonate chemistry. Front Mar Sci 7:588465. https://doi.org/10.3389/fmars.2020.588465

    Article  Google Scholar 

  • López-Jiménez IT, Flórez-Leiva L, Quan-Young LI (2020) Influence of herbivory on coral-algal interaction in a coral reef, Capurganá Bay, Colombian Caribbean. Rev Biol Trop 68:729–742. https://doi.org/10.15517/rbt.v68i3.38760

    Article  Google Scholar 

  • López-Jiménez IT, Florez-Leiva L, Quan-Young L (2021) Effect of terrigenous sediments on macroalgae functional-form groups of coral reefs in Capurganá, Colombian Caribbean. Sci Mar 85:125–135. https://doi.org/10.3989/scimar.05146.013

    Article  Google Scholar 

  • Lozano-Duque Y, Vidal LA, Navas GR (2010) Check-list of diatoms (bacillariophyta) reported from the colombian Caribbean Sea. Bol Investig Mar Costeras INVEMAR 39:83–116

    Google Scholar 

  • Medellín-Mora J, Martínez-Ramírez O (2010) Distribución del mesozooplancton en aguas oceánicas del mar Caribe colombiano durante mayo y junio de 2008. In: INVEMAR (ed) Biodiversidad del Margen Continental del Caribe colombiano. Ser Publicaciones Especiales. INVEMAR, Santa Marta, pp 119–148

    Google Scholar 

  • Molina A, Molina C, Chevillot P (1992) La percepción remota aplicada para determinar la circulación de las aguas superficiales del Golfo de Urabá y las variaciones de su línea de costa. Bol Cient CIOH 43–58. https://doi.org/10.26640/22159045.45

  • Montoya LJ (2010) Dinámica oceanográfica del golfo de Urabá y su relación con los patrones de dispersión de contaminantes y sedimentos. Ph.D. Thesis, The National University of Colombia

  • Murillo Y, Quesada Z, Vargas L (2017) Evaluación de la calidad fisicoquímica del agua de la bahía de Turbo teniendo en cuenta dos temporalidades. Bioetnia 14:65–79. https://doi.org/10.51641/bioetnia.v14i1.180

    Article  Google Scholar 

  • Nystuen JA, Andrade CA (1993) Tracking mesoscale ocean features in the Caribbean Sea using Geosat altimetry. J Geophys Res 98:8389–8394. https://doi.org/10.1029/93JC00125

    Article  Google Scholar 

  • Obando-Montoya EJ, Zapata-Ocampo PA, Cuesta-Astroz Y, Atehortua L (2022) Impact of light wavelength on the transcriptome of Porphyridium cruentum and culture yield. Algal Res 67:102856. https://doi.org/10.1016/j.algal.2022.102856

    Article  Google Scholar 

  • Pawlowicz R (2020) M_Map: a mapping package for MATLAB, version 1.4m. [Computer software]. https://www.eoas.ubc.ca/~rich/map.html

  • Quiceno PA, Zapata JL, Sánchez A (2015) Estado del arte de la investigación en ecología de zonas costeras en la región de Urabá: herramienta para la participación y apropiación del conocimiento por parte de la comunidad. Eitorial L Vieco SAS, p 195

    Google Scholar 

  • Restrepo JD, López SD, Restrepo JC (2009) The effects of geomorphic controls on sediment yield in the Andean rivers of Colombia. Lat Am J Sedimentol Basin Anal 16:79–92

    Google Scholar 

  • Restrepo J, Schrottke K, Bartholomä A, Ospino S, Ortíz J, Otero L, Rondón A (2018) Estuarine and sediment dynamics in a microtidal tropical estuary of high fluvial discharge: Magdalena River (Colombia, South America). Mar Geol 398:86–98. https://doi.org/10.1016/j.margeo.2017.12.008

    Article  Google Scholar 

  • Ricaurte-Villota C, Bastidas-Salamanca ML (2017) Regionalización oceanográfica: una visión dinámica del Caribe. In: Ordoñez-Zuñiga SA, Peña CE, Bastidas ML, Ricaute C (eds) Región 8: Sinú-Urabá. Serie publicaciones especiales del INVEMAR, pp 138–155

  • Robins CR (1971) Distribution patterns of fishes from coastal and shelf waters of the tropical western Atlantic. In: Symposium on Investigations and Resources of the Caribbean Sea and Adjacent Regions, Papers on Fisheries Resources, FAO, Rome, pp 249–255

  • Roldán P (2008) Modelamiento del patrón de circulación de la bahía Colombia, golfo de Urabá. Implicaciones para el transporte de sedimentos. The National University of Colombia

    Google Scholar 

  • Sandoval LL, Leal-Florez J, Blanco-Libreros JF (2020) Linking mangroves and fish catch: a correlational study in the southern Caribbean Sea (Colombia). B Mar Sci 96:415–430. https://doi.org/10.5343/bms.2019.0022

    Article  Google Scholar 

  • Selfridge TO (1874) Reports of explorations and surveys to ascertain the practicability of a ship-canal between the Atlantic and Pacific Oceans by the way of the Isthmus of Darien. US Government Printing Office, Washington DC, p 263

    Google Scholar 

  • Toro VG, Mosquera WA, Barrientos NS, Bedoya YA (2019) Circulación oceánica del golfo de Urabá usando campos de viento de alta resolución temporal. Bol Cient CIOH 38:26–35. https://doi.org/10.26640/22159045.2019.516

    Article  Google Scholar 

  • Velásquez L (2013) Modelación del transporte de sedimentos en el golfo de Uraba, Colombia. Ph.D. Thesis, EAFIT University

  • Vidal LA (2010) Manual del fitoplancton hallado en la ciénaga grande de santa marta y cuerpos de agua aledaños en Colombia. University of Bogota Jorge Tadeo Lozano, Bogotá, p 384

    Google Scholar 

  • Williams G (2015) The historical context and influence of William Dampier’s hydrographic science. Great Circle 37:53–81

    Google Scholar 

  • Wüst G (1964) The major deep-sea expeditions and research vessels 1873–1960: a contribution to the history of oceanography. Prog Oceanogr 2:1–52. https://doi.org/10.1016/0079-6611(64)90002-3

    Article  Google Scholar 

  • Zambrano (2021) Capítulo 6: componente ambiental. In: Gobernación de Antioquia, Universidad de Antioquia, Universidad Nacional y Universidad del Norte (eds) Erosión Costera en el Litoral Antioqueño, Medellín, pp 105–116

  • Zeigler JM, Athearn WD (1965) The hydrography and sediments of the gulf of Darien. In: Caribbean Geological Conference, 4th Port-of-Spain, Trinidad and Tobago, Defense Technical Information Center, pp 335–341

Download references

Acknowledgements

The authors wish to thank the research group OCE (Oceans, climate, and Environment) of Universidad de Antioquia (Colombia) for the supply of instruments and technicians during the study. Also, we are thankful to IDEAM for their database and to the Marine and Coastal Research Institute—INVEMAR and CORPOURABÁ for providing the REDCAM database. The authors thank the Copernicus Marine Environment Monitoring Service for providing current data (CMEMS), available online at https://marine.copernicus.eu/, and express thanks to the European Centre for Medium-Range Weather (ECMWF) for providing the ERA-5 wind reanalysis, available at https://climate.copernicus.eu/climate-reanalysis, and the European Space Agency (ESA) for the production and distribution of the Ocean Colour Climate Change Initiative dataset, Version 3.1, available online at http://www.oceancolour.org/ (Pawlowicz 2020).We would also like to acknowledge the anonymous reviewers for their valuable comments and suggestions about the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Contreras-Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Fernández, S., Florez-Leiva, L., Bernal-Sánchez, M.C. et al. Gulf of Urabá (Caribbean Colombia), a Tropical Estuary: A Review with Some General Lessons About How it Works. Ocean Sci. J. 57, 556–575 (2022). https://doi.org/10.1007/s12601-022-00093-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-022-00093-9

Keywords

Navigation