Skip to main content
Log in

Life-history traits of Dacus frontalis Becker (Diptera: Tephritidae) reared at four constant temperatures

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Dacus frontalis (Diptera: Tephritidae) is an emerging species affecting fruit production in Africa and may pose a serious risk to the Cucurbitaceae fruit producing industry in Europe in response to climate change. To understand how temperature affects the fitness and population dynamics of this species and consequently its invasive potential, we investigated for the first time the survival and development time of immature stages, longevity and fecundity of D. frontalis adults in the laboratory at four constant temperatures of 15, 20, 25 and 30 °C. In addition, the lower developmental threshold and thermal constant were calculated using a temperature summation model. Results showed that the rearing temperature has a significant effect on the survival, development, reproduction, and longevity of the pumpkin fruit fly. The highest survival rates of eggs, larvae, pupae, adult females and males were observed at 20 °C. The development time of immature stages and from egg to adult, decreased significantly with increasing temperature from 15 to 30 °C. Females produced a significantly higher number of eggs at 20 °C, and no oviposition was observed at 15 °C. Pupae were able to survive at 15 °C with the longest development time, suggesting that this tephritid species can overwinter as pupae in the field in North Africa. The thermal constant of egg, larval, and pupal stages were 33, 95, and 210 DD, respectively. The minimum temperature threshold of egg, larval, and pupal stages were 4.6, 13.5, and 9.5 °C, respectively. These thermal requirements may explain the seasonality of D. frontalis observed in North Africa. Implications for pest management and potential geographical distribution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn, J. J., Choi, K. S., & Huang, Y. B. (2022). Thermal effects on the development of Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae) and model validation. Phytoparasitica, 50, 601–616.

    Article  CAS  Google Scholar 

  • Al-Jorany, R., Al-Zubaidy, H., & Flair, S. (2019). Economic losses and economic threshold of Cucurbit fruit fly Dacus ciliatus (Loew) and Greater Melon fruit fly Dacus frontalis (Becker) on Cucumber Cucumis Staivus L. in middle of Iraq. Journal of Kerbala for Agricultural Sciences, 2, 106–117.

    Article  Google Scholar 

  • Al-Soltany, A. H., Al-Dahwy, S. S., & Ali, A. A. (2020). Evaluation of the bifenthrin 10% EC in both normal and nanoparticules against Dacus frontalis in cucumbers field. Plant Archives, 20, 1131–1135.

    Google Scholar 

  • Ba-Angood, S. A. S. (1977). Control of the melon fruit fly, Dacus frontalis Becker (Diptera: Trypetidae), on cucurbits. Journal of Horticultural Sciences, 52, 545–547.

    Article  CAS  Google Scholar 

  • Badii, K., Billah, M., Afreh-Nuamah, K., Obeng-Ofori, D., & Nyarko, G. (2015). Review of the pest status, economic impact and management of fruit-infesting flies (Diptera: Tephritidae) in Africa. African Journal of Agricultural Research, 10, 1488–1498.

    Article  Google Scholar 

  • Bale, J. (2002). Insects and low temperatures: From molecular biology to distributions and abundance. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 357, 849–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonebrake, T. C., & Deutsch, C. A. (2012). Climate heterogeneity modulates impact of warming on tropical insects. Ecology, 93, 449–455.

    Article  PubMed  Google Scholar 

  • Brévault, T., & Quilici, S. (2000). Relationships between temperature, development and survival of different life stages of the tomato fruit fly, Neoceratitis cyanescens. Entomologia Experimentalis et Applicata, 94, 25–30.

    Article  Google Scholar 

  • Burikam, I., Sarnthoy, O., Charernsom, K., Kanno, T., & Homma, H. (1992). Cold temperature treatment for mangosteens infested with the oriental fruit fly (Diptera: Tephritidae). Journal of Economic Entomolgy, 85, 2298–2301.

    Article  Google Scholar 

  • Choudhary, J. S., Mali, S. S., Naaz, N., Mukherjee, D., Moanaro, L., Das, B., Singh, A., Rao, M. S., & Bhatt, B. (2020). Predicting the population growth potential of Bactrocera zonata (Saunders)(Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition. Phytoparasitica, 48, 1–13.

    Article  Google Scholar 

  • Clarke, A. R., Merkel, K., Hulthen, A. D., & Schwarzmueller, F. (2019). Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) overwintering: An overview. Austral Entomology, 58, 3–8.

    Article  Google Scholar 

  • Denlinger, D. L. (2002). Regulation of diapause. Annual Review of Entomology, 47, 93–122.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y. C., Wang, Z. J., Clarke, A. R., Pereira, R., Desneux, N., & Niu, C. Y. (2013). Pupal diapause development and termination is driven by low temperature chilling in Bactrocera minax. Journal of Pest Science, 86, 429–436.

    Article  Google Scholar 

  • Duyck, P. F., & Quilici, S. (2002). Survival and development of different life stages of three Ceratitis spp (Diptera: Tephritidae) reared at five constant temperatures. Bulletin of Entomological Research, 92, 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Duyck, P. F., Sterlin, J. F., & Quilici, S. (2004). Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bulletin of Entomological Research, 94, 89–93.

    Article  CAS  PubMed  Google Scholar 

  • Duyck, P. F., Quilici, S., & Glenac, S. (2002). Comparative study of the developmental biology of three species of fruit flies (Ceratitis spp.) (Diptera: Tephritidae), pests of fruit crops on Réunion Island. In: B. N. Barnes (Ed.), Proceedings of the 6th International Fruit Fly Symposium 6–10 May 2002 (pp. 67–69). Stellenbosch, South Africa.

  • Ekesi, S., Lux, S., & Billah, M. (2007). Field comparison of food-based synthetic attractants and traps for African tephritid fruit flies: Development of improved attractants and their integration into fruit fly SIT management programmes. IAEA Vienna. https://inis.iaea.org/collection/NCLCollectionStore/_Public/38/115/38115160.pdf#page=212. Accessed 2021

  • Elghadi, E., & Port, G. (2019). Use of Entomopathogenic Fungi for the Biological Control of the Greater Melon Fly Dacus frontalis in Libya. In: D. Perez-Staples, F. Diaz-Fleischer, P. Montoya, & M. Vera (Eds.), Area-Wide Management of Fruit Fly Pests (1st ed., pp. 251–265).

  • El-Harym, Y., & Belqat, B. (2017). First checklist of the fruit flies of Morocco, including new records (Diptera, Tephritidae). Zookeys, 702, 137–171.

    Article  Google Scholar 

  • Fletcher, B. (1975). Temperature-regulated changes in the ovaries of overwintering females of the Queensland fruit fly, Dacus Tryoni. Australian Journal of Zoology, 23, 91–102.

    Article  Google Scholar 

  • Fletcher, B. (1987). The biology of dacine fruit flies. Annual Review of Entomology, 32, 115–144.

    Article  Google Scholar 

  • Foottit, R. G., & Adler, P. H. (2009). Insect biodiversity: Science and society. Wiley.

    Book  Google Scholar 

  • Grechi, I., Preterre, A. L., Lardenois, M., & Ratnadass, A. (2022). Bactrocera dorsalis invasion increased fruit fly incidence on mango production in Reunion Island. Crop Protection, 161, 1–9.

    Article  Google Scholar 

  • Grout, T. G., & Stoltz, K. C. (2014). Developmental rates at constant temperatures of three economically important Ceratitis spp. (Diptera: Tephritidae) from southern Africa. Environmental Entomolgy, 36, 1310–1317.

    Article  Google Scholar 

  • Gutierrez, A. P., & Ponti, L. (2014). Analysis of invasive insects: Links to climate change. In L. H. Ziska, & J. S. Dukes (Eds.), Invasive species and global climate change (4th ed., pp. 45–61). CABI.

  • Hafsi, A., Abbes, K., Harbi, A., Ben Othmen, S., Limem, E., Elimem, M., Ksantini, M., & Chermiti, B. (2015a). The pumpkin fly Dacus frontalis (Diptera: Tephritidae): A new pest of curcubits in Tunisia. EPPO Bulletin, 45, 209–213.

    Article  Google Scholar 

  • Hafsi, A., Abbes, K., Harbi, A., Rahmouni, R., & Chermiti, B. (2015b). Comparative efficacy of Malathion and spinosad bait sprays against Ceratitis capitata Wiedmann (Diptera: Tephritidae) in Tunisian citrus orchards. Journal of Entomology and Zoology Studies, 3, 246–249.

    Google Scholar 

  • Hill, S. J., Silcocks, S. C., & Andrew, N. R. (2020). Impacts of temperature on metabolic rates of adult Extatosoma tiaratum reared on different host plant species. Physiological Entomology, 45, 7–15.

    Article  CAS  Google Scholar 

  • Huang, Y., Gu, X., Peng, X., Tao, M., Peng, L., Chen, G., & Zhang, X. (2020). Effect of short-term low temperature on the growth, development, and reproduction of Bactrocera tau (Diptera: Tephritidae) and Bactrocera cucurbitae. Journal of Economic Entomology, 113, 2141–2149.

    Article  PubMed  Google Scholar 

  • Jessup, A. J., & Baheer, A. (1990). Low-temperature storage as a quarantine treatment for kiwifruit infested with Dacus tryoni (Diptera: Tephritidae). Journal of Economic Entomology, 83, 2317–2319.

    Article  Google Scholar 

  • Kalaitzaki, A., Amara, A., Dervisoglou, S., Perdikis, D., Τzοbanoglou, D., Koufakis, I., & Tsagkarakis, Α. (2023). Effect of host plant species and temperature on the development and survival of the plant bug Closterotomus Trivialis (Costa) (Hemiptera: Miridae). Phytoparasitica, 51, 19–28.

    Article  CAS  Google Scholar 

  • Krainacker, D., Carey, J., & Vargas, R. (1989). Size-specific survival and fecundity for laboratory strains of two tephritid (Diptera: Tephritidae) species: Implications for mass rearing. Journal of Economic Entomology, 82, 104–108.

    Article  Google Scholar 

  • Merkel, K., Schwarzmueller, F., Hulthen, A. D., Schellhorn, N., Williams, D., & Clarke, A. R. (2019). Temperature effects on overwintering phenology of a polyphagous, tropical fruit fly (Tephritidae) at the subtropical/temperate interface. Journal of Applied Entomology, 143, 754–765.

    Article  CAS  Google Scholar 

  • Pfab, F., Stacconi, M. V. R., Anfora, G., Grassi, A., Walton, V., & Pugliese, A. (2018). Optimized timing of parasitoid release: A mathematical model for biological control of Drosophila suzukii. Theoretical Ecology, 11, 489–501.

    Article  Google Scholar 

  • Pieterse, W., Terblanche, J. S., & Addison, P. (2017). Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)? Journal of Insect Physiology, 98, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team. (2008). R: A language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

  • Régnière, J., Powell, J., Bentz, B., & Nealis, V. (2012). Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. Journal of Insect Physiology, 58, 634–647.

    Article  PubMed  Google Scholar 

  • Rossini, L., Contarini, M., Giarruzzo, F., Assennato, M., & Speranza, S. (2020). Modelling Drosophila suzukii adult male populations: A physiologically based approach with validation. Insects, 11, 1–15.

    Article  Google Scholar 

  • Schlesener, D. C., Wollmann, J., Krüger, A. P., Martins, L. N., Teixeira, C. M., Bernardi, D., & Garcia, F. R. (2020). Effect of temperature on reproduction, development, and phenotypic plasticity of Drosophila suzukii in Brazil. Entomologia Experimentalis et Applicata, 168, 817–826.

    Article  Google Scholar 

  • Secretariat. (2023). GBIF backbone taxonomy. Checklist dataset. Retrieved November 22, 2023, from https://doi.org/10.15468/39omei

  • Shawkit, M. A., Basam, A. N., Hussian, F., Edan, L. H., & Mahmood, A. R. (2011). Population density and biological studies of two cucucrbit flies species: Dacus ciliates Loew and Dacus frontalis Beecker (Diptera: Tephritidae). Journal of Madenat Alelem University College, 3, 78–84.

    Google Scholar 

  • Sinclair, B. J., Williams, C. M., & Terblanche, J. S. (2012). Variation in thermal performance among insect populations. Physiological and Biochemical Zoology, 85, 594–606.

    Article  PubMed  Google Scholar 

  • Tanga, C. M., Manrakhan, A., Daneel, J. H., Mohamed, S. A., Fathiya, K., & Ekesi, S. (2015). Comparative analysis of development and survival of two Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae) populations from Kenya and South Africa. ZooKeys, 540, 467–487.

    Article  Google Scholar 

  • Tauber, M. J., & Tauber, C. A. (1976). Diapause maintenance, terminantion, and postdiapose. Annual Review of Entomology, 21, 81–107.

    Article  Google Scholar 

  • Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., Rako, L., Le Roux, P. C., & Chown, S. L. (2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 214, 3713–3725.

    Article  PubMed  Google Scholar 

  • Terblanche, J. S., Karsten, M., Mitchell, K. A., Barton, M. G., & Gibert, P. (2015). Physiological variation of insects in agricultural landscapes: potential impacts of climate change. In: C. Björkman, & P. Niemelä (Eds.), Climate Change and Insect Pests. (8th ed., pp 92–118).

  • Terblanche, J. S., Nyamukondiwa, C., & Kleynhans, E. (2010). Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomologia Experimentalis et Applicata, 137, 304–315.

    Article  Google Scholar 

  • Tzanakakis, M. E. (2003). Seasonal development and dormancy of insects and mites feeding on olive: A review. Netherlands Journal of Zoology, 52, 87–224.

    Article  Google Scholar 

  • Vargas, R. I., Walsh, W. A., Kanehisa, D., Stark, J. D., & Nishida, T. (2000). Comparative demography of three hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Annals of the Entomological Society of America, 93, 75–81.

    Article  Google Scholar 

  • Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L., & Terblanche, J. S. (2018). Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Scientific Reports, 8, 1–13.

    Article  CAS  Google Scholar 

  • White, I. M., & Elson-Harris, M. M. (1992). Fruit flies of economic significance: Their identification and bionomics. CAB International.

    Book  Google Scholar 

  • Wiman, N. G., Dalton, D. T., Anfora, G., Biondi, A., Chiu, J. C., Daane, K. M., Gerdeman, B., Gottardello, A., Hamby, K. A., & Isaacs, R. (2016). Drosophila suzukii population response to environment and management strategies. Journal of Pest Science, 89, 653–665.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler, A., Jung, J., Kleinhenz, B., & Racca, P. (2020). A review on temperature and humidity effects on Drosophila suzukii population dynamics. Agricultural and Forest Entomology, 22, 179–192.

    Article  Google Scholar 

Download references

Acknowledgements

This publication was produced with the financial support of the European Union within the framework of the ENI Cross-Border Cooperation Programme Italy-Tunisia 2014–2020 through the INTEMAR project -IS_2.1_073 Innovations in the integrated control of insect pests and pathogens recently introduced on vegetable crops. Its content is the sole responsibility of the project beneficiary and does not necessarily reflect the opinions of the European Union and those of the Managing Authority. This study used the facilities provided by the High Agronomic Institute of Chott-Mariem, University of Sousse, Tunisia. We think the student H. Mannai that contributed to measuring D. frontalis life history traits during here internship.

Funding

This study was produced with the financial support of the European Union within the framework of the ENI Cross-Border Cooperation Programme Italy-Tunisia 2014–2020 through the INTEMAR project -IS_2.1_073 Innovations in the integrated control of insect pests and pathogens recently introduced on vegetable crops.

Author information

Authors and Affiliations

Authors

Contributions

A.H., K.A., and B.C. contributed to the study conception, design and/or writing of the manuscript. Material preparation, data collection and analysis were performed by A.H. and K.A. Statistical analysis was approved by P-F.D. The first draft of the manuscript was written by A.H. All authors reviewed and edited the final manuscript.

Corresponding author

Correspondence to Abir Hafsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafsi, A., Abbes, K., Duyck, PF. et al. Life-history traits of Dacus frontalis Becker (Diptera: Tephritidae) reared at four constant temperatures. Phytoparasitica 52, 16 (2024). https://doi.org/10.1007/s12600-024-01132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12600-024-01132-y

Keywords

Navigation