Skip to main content
Log in

Do the invasive Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and the maize lepidopteran stemborers compete when sharing the same food?

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

In insect communities, the outcome of intra- and inter-specific competitions for food utilisation depend primarily upon density and duration even inter-specific competitions can occur when they are not sharing the same feeding niche such as between foliar feeders and stemborers. Experimental manipulations of larval densities and the durations of common diet feeding of fall armyworm (FAW), S. frugiperda, and the African lepidopteran stemborers, Busseola fusca, Sesamia calamistis and Chilo partellus, were conducted to determine how the density and the duration of resource utilization affected larval survival and the relative growth rate (RGR) in intra- and inter-specific interactions. The results showed both intra- and interspecific competitions were observed among all the four species and interspecific competition was significantly stronger between the stemborers than between the FAW and the stemborers. The results showed that multiple infestations of cereal plants with low larval densities of each species at optimum conditions will very likely prolong the coexistence between FAW and stemborers. In addition, the time partitioning of the resource use significantly influenced this coexistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrew, P., Hide, M., Sidobre, C., & Michalakis, Y. (2002). A minimalist approach to the effects of density- dependent competition on insect life-history traits. Ecological Entomology, 27, 396–402.

    Article  Google Scholar 

  • Ayabe, Y., Minoura, T., & Hijii, N. (2015). Plasticity in resource use by the leafminer moth Phyllocnistis Sp. in response to variations in host plant resources over space and time. Journal of Forest Research, 20, 213–221. https://doi.org/10.1007/s10310-014-0467-9

    Article  CAS  Google Scholar 

  • Bentivenha, J. P., Montezano, D., Hunt, T. E., Baldin, E. L., Peterson, J. A., Victor, V., Pannuti, L. E., Velez, A. M., & Paula-Moraes, S. V. (2017). Intraguild interactions and behavior of Spodoptera frugiperda and Helicoverpa spp . on maize. Pest Management Science, 73, 2244–2251. https://doi.org/10.1002/ps.4595

    Article  PubMed  CAS  Google Scholar 

  • Blanckenhorn, W. U. (1998). Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly. Evolution, 52, 1394–1407. https://doi.org/10.1111/j.1558-5646.1998.tb02021.x

    Article  PubMed  Google Scholar 

  • Boggs, C. L. (2009). Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology, 23, 27–37. https://doi.org/10.1111/j.1365-2435.2009.01527.x

    Article  Google Scholar 

  • Bystrom, P., & Garcia-berthou, E. (1999). Density dependent growth and size specific competitive interactions in young fish. Oikos, 86, 217–232.

  • Calcagno, V., Mouquet, N., Jarne, P., & David, P. (2006). Coexistence in a metacommunity : the competition–colonization trade-off is not dead. Ecology Letters, 9, 897–907. https://doi.org/10.1111/j.1461-0248.2006.00930.x

    Article  PubMed  CAS  Google Scholar 

  • Cameron, T. C., Wearing, H. J., Rohani, P., & Sait, S. M. (2007). Two-species asymmetric competition : effects of age structure on intra- and interspecific interactions. Journal of Animal Ecology, 76, 83–93. https://doi.org/10.1111/j.1365-2656.2006.01185.x

    Article  Google Scholar 

  • Chapman, J. W., Williams, T., Escribanoc, A., Caballero, P., & Cave, R. D. (1999a). Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behavioral Ecology, 10, 298–303.

    Article  Google Scholar 

  • Chapman, J. W., Williams, T., Escribano, A., Caballero, P., Cave, R. D., & Goulson, D. (1999b). Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecological Entomology, 24, 268–275.

    Article  Google Scholar 

  • Chapman, J. W., Williams, T., Martínez, A. M., & Cisneros, J. (2000). Does cannibalism in Spodoptera frugiperda ( Lepidoptera : Noctuidae ) reduce the risk of predation ? Behavioural Ecology and Sociobiology, 48, 321–327. https://doi.org/10.1007/s002650000237

    Article  Google Scholar 

  • Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366.

    Article  Google Scholar 

  • Connell, J. H. (1983). On the prevalence and relative importance of interspecific competition: evidence from field experiments. The American Naturalist, 122, 661–696. https://doi.org/10.1086/284165

    Article  Google Scholar 

  • Coulson, T., Milner-Gulland, E., & Clutton-Brock, T. (2000). The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species. Proceedings of the Royal Society of London Series B, 267, 1771–1779. https://doi.org/10.1098/rspb.2000.1209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Silva, M. (1999). Factors limiting the efficiency of insecticides to control Spodoptera frugiperda Smith in maize. Ciência Rural, 29, 383–387.

    Article  Google Scholar 

  • Da Silva, C. S. B., & Parra, J. R. P. (2013). New method for rearing Spodoptera frugiperda in laboratory shows that larval cannibalism is not obligatory. Revista Brasileira de Entomologia, 57, 347–349. https://doi.org/10.1590/S0085-56262013005000029

    Article  Google Scholar 

  • De Polanía, I. Z., Maldonado, H. A., Cruz, R. M., & Sánchez, J. D. (2009). Spodoptera frugiperda: response of different populations to the Cry1Ab toxin. Revista Colombiana de Entomología, 35, 34–41.

    Google Scholar 

  • Delong, J. P., Hanley, T. C., & Vasseur, D. A. (2014). Competition and the density dependence of metabolic rates. Journal of Animal Ecology, 83, 51–58. https://doi.org/10.1111/1365-2656.12065

    Article  Google Scholar 

  • Denno, R. F., Mcclure, M. S., & Ott, J. R. (1995). Interspecific interactions in phytophagous insects: Competition Reexamined and Resurrected. Annual Review of Entomology, 40, 297–331 Retrieved from http://jimott.wp.txstate.edu/files/2013/05/1995-Denno-at-al.pdf

    Article  CAS  Google Scholar 

  • Duyck, P. F., David, P., & Quilici, S. (2004). A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecological Entomology, 29, 511–520. https://doi.org/10.1111/j.0307-6946.2004.00638.x

    Article  Google Scholar 

  • Fantinou, A. A., Perdikis, D. C., & Stamogiannis, N. (2008). Effect of larval crowding on the life history traits of Sesamia nonagrioides (Lepidoptera : Noctuidae). European Journal of Entomology, 105, 625–630. https://doi.org/10.14411/eje.2008.084

    Article  Google Scholar 

  • Farias, S. P. R., Barbosa, J. C., & Busoli, A. C. (2001). Sequencial sampling based on taylor’s power law for the survey of Spodoptera frugiperda for the corn crop. Scientia Agricola, 58, 395–399.

    Article  Google Scholar 

  • Flockhart, D. T., Martin, T. G., & Norris, D. R. (2012). Experimental examination of intraspecific density- dependent competition during the breeding period in monarch butterflies (Danaus plexippus). PLoS One, 7, e45080. https://doi.org/10.1371/journal.pone.0045080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fordyce, J. A. (2006). The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. The Journal of Experimental Biology, 209, 2377–2383. https://doi.org/10.1242/jeb.02271

    Article  PubMed  Google Scholar 

  • Gibbs, M., Lace, L. A., Jones, M. J., & Moore, A. J. (2004). Intraspecific competition in the speckled wood butterfly Pararge aegeria : Effect of rearing density and gender on larval life history. Journal of Insect Science, 4, 16.

    Article  Google Scholar 

  • Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One, 11, e0165632.

    Article  CAS  Google Scholar 

  • Goussain, M. M., Moraes, J. C., Carvalho, J. G., Nogueira, N. L., & Rossi, E. M. L. (2002). Effect of silicon application on corn plants upon the biological development of the fall Armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology, 31, 305–310.

    Article  CAS  Google Scholar 

  • Gurevitch, J., Morrow, L. L., Wallace, A., & Walsh, J. S. (1992). A Meta-analysis of competition in field experiments. The American Naturalist, 140, 539–572.

    Article  Google Scholar 

  • Hailu, G., Niassy, S., Bässler, T., Ochatum, N., Studer, C., Salifu, D., Agbodzavu, M. K., Khan, Z. R., Midega, C., & Subramanian, S. (2021). Could fall armyworm, Spodoptera frugiperda (J. E. Smith) invasion in Africa contribute to the displacement of cereal stemborers in maize and sorghum cropping systems. International Journal of Tropical Insect Science, 41, 1753–1762. https://doi.org/10.1007/s42690-020-00381-8

    Article  Google Scholar 

  • Hemphill, N. (1991). Disturbance and variation in competition between two stream insects. Ecology, 72, 864–872.

    Article  Google Scholar 

  • Inbar, M. (1995). Interspecific competition among phloem-feeding insects mediated by induced host-plant sinksi. Ecology, 76, 1506–1515.

    Article  Google Scholar 

  • Kaplan, I., & Denno, R. F. (2007). Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecology Letters, 10, 977–994. https://doi.org/10.1111/j.1461-0248.2007.01093.x

    Article  PubMed  Google Scholar 

  • Kfir, R. (1997). Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 90, 619–624. https://doi.org/10.1093/aesa/90.5.619

    Article  Google Scholar 

  • Kfir, R., Overholt, W. A., Khan, Z. R., & Polaszek, A. (2002). Biology and management of economicaly important lepidopteran cereal stem borers in Africa. Annual Review of Entomology, 47, 701–731. https://doi.org/10.1146/annurev.ento.47.091201.145254

    Article  PubMed  CAS  Google Scholar 

  • Khadioli, N., Tonnang, Z. E. H., Muchugu, E., Ong’amo, G., Achia, T., Kipchirchir, I., Kroschel, J., & Le Ru, B. (2014a). Effect of temperature on the phenology of Chilo partellus ( Swinhoe ) ( Lepidoptera , Crambidae); simulation and visualization of the potential future distribution of C . partellus in Africa under warmer temperatures through the development of life-table. Bulletin of Entomological Research, 104, 809–822. https://doi.org/10.1017/S0007485314000601

    Article  PubMed  CAS  Google Scholar 

  • Khadioli, N., Tonnang, Z. E. H., Ong’mo, G., Achia, T., Kipchirchir, I., Kroschel, J., & Le Ru, B. (2014b). Effect of temperature on the life history parameters of noctuid lepidopteran stem borers , Busseola fusca and Sesamia calamistis. Annals of Applied Biology, 165, 373–386. https://doi.org/10.1111/aab.12157

    Article  Google Scholar 

  • King, E. G., & Roff, D. A. (2010). Modeling the evolution of phenotypic plasticity in resource allocation in wing-dimorphic insects. The American Naturalist, 175, 702–716. https://doi.org/10.1086/652434

    Article  PubMed  Google Scholar 

  • Krüger, W., van den Berg, J., & van Hamburg, H. (2008). The relative abundance of maize stem borers and their parasitoids at the Tshiombo irrigation scheme in Venda, South Africa. South African Journal of Plant and Soil, 25, 144–151. https://doi.org/10.1080/02571862.2008.10639910

    Article  Google Scholar 

  • Leisnham, S. A., & Juliano, P. T. (2009). Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia, 160, 343–352. https://doi.org/10.1007/s00442-009-1305-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenth, R. V. (2016). Least-Squares Means : The R Package lsmeans. Journal of Statistical Software, 69, 1–33.

    Article  Google Scholar 

  • Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K., & Relyea, R. A. (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution, 20, 685–692. https://doi.org/10.1016/j.tree.2005.08.002

    Article  Google Scholar 

  • Muriu, S. M., Coulson, T., Mbogo, C. M., & Godfray, H. C. J. (2013). Larval density dependence in Anopheles gambiae s. s., the major African vector of malaria. Journal of Animal Ecology, 82, 166–174. https://doi.org/10.1111/1365-2656.12002

    Article  Google Scholar 

  • Ntiri, E. S., Calatayud, P. A., Van Den Berg, J., Schulthess, F., & Le Ru, B. P. (2016). Influence of temperature on intra- And interspecific resource utilization within a community of lepidopteran maize stemborers. PLoS One, 11, e148735. https://doi.org/10.1371/journal.pone.0148735

    Article  CAS  Google Scholar 

  • Ntiri, E. S., Calatayud, P. A., Van den Berg, J., & Le Ru, B. P. (2017). Density dependence and temporal plasticity of competitive interactions during utilisation of resources by a community of lepidopteran stemborer species. Entomologia Experimentalis et Applicata, 162, 272–283. https://doi.org/10.1111/eea.12514

    Article  Google Scholar 

  • Nylin, S., & Gotthard, K. (1998). Plasticity in Life-History Traits. Annual Review of Entomology, 43, 63–83. https://doi.org/10.1146/annurev.ento.43.1.63

    Article  PubMed  CAS  Google Scholar 

  • Ojeda-Avila, T., Woods, H. A., & Raguso, R. A. (2003). Effects of dietary variation on growth , composition , and maturation of Manduca sexta (Sphingidae : Lepidoptera). Journal of Insect Physiology, 49, 293–306. https://doi.org/10.1016/S0022-1910(03)00003-9

    Article  PubMed  CAS  Google Scholar 

  • Ong’amo, G., Le Rü, B., Dupas, S., Moyal, P., Calatayud, P.-A., & Silvain, J.-F. (2006). Distribution, pest status and agro-climatic preferences of lepidopteran stem borers of maize in Kenya. Annales de La Société Entomologique de France (N.S.), 42, 171–177. https://doi.org/10.1080/00379271.2006.10700620

    Article  Google Scholar 

  • Onyango, F. O., & Ochieng’-Odero, J. E. R. (1994). Continuous rearing of the maize stem borer Busseola fusca on an artificial diet. Entomologia Experimentalis et Applicata, 73, 139–144.

    Article  Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing Retrieved from https://www.R-project.org/

    Google Scholar 

  • Rebe, M., van den Berg, J., & Mcgeoch, M. A. (2004). Colonization of cultivated and indigenous graminaceous host plants by Busseola fusca (Fuller) (Lepidoptera: Noctuidae) and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) under field conditions. African Entomology, 12, 187–199.

    Google Scholar 

  • Rwomushana, I., Bateman, M., Beale, T., Beseh, P., Cameron, K., Chiluba, M., Clottey, V., Davis, T., Day, R., Early, R., Godwin, J., Gonzalez-Moreno, P., Kansiime, M., Kenis, M., Makale, F., Mugambi, I., Murphy, S., Nunda, W., Phiri, N., et al. (2018). Fall armyworm: Impacts and implications for Africa. In Evidence Note Update, October 2018. CABI.

    Google Scholar 

  • Sarmento, R. D. A., Aguiar, D. S. W. R., Aguiar, R. D. A. S. d. S., Viera, S. M. J., de Oliveira, H. G., & Holtz, A. M. (2002). Biology review, occurence and control of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in corn in Brazil. Bioscience Journal, 18, 41–48.

    Google Scholar 

  • Schoener, T. W. (1983). Field experiments on interspecific competition. The American Naturalist, 122, 240–285. https://doi.org/10.1086/284133

    Article  Google Scholar 

  • Seshu Reddy, K. V. (1998). Maize and sorghum: East Africa. In A. Polaszek (Ed.), African cereal stem borers: economic importance, taxonomy, natural enemies and control. CAB International. Wallingford.

    Google Scholar 

  • Sisay, B., Simiyu, J., Malusi, P., Likhayo, P., Mendesil, E., Elibariki, N., Wakgar, M., Ayalew, G., & Tefera, T. (2018). First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. Journal of Applied Entomology, 142, 800–804. https://doi.org/10.1111/jen.12534

    Article  Google Scholar 

  • Sokame, B. M., Rebaudo, F., Malusi, P., Subramanian, S., Kilalo, D. C., Juma, G., & Calatayud, P.-A. (2020). Influence of temperature on the interaction for resource utilization between Fall Armyworm, Spodoptera frugiperda (Lepidoptera : Noctuidae), and a community of lepidopteran maize stemborers larvae. Insects, 11, 73.

    Article  Google Scholar 

  • Sokame, B. M., Musyoka, B., Obonyo, J., Rebaudo, F., Abdel-rahman, E. M., Subramanian, S., Kilalo, D. C., Juma, G., & Calatayud, P.-A. (2021). Impact of an exotic invasive pest, Spodoptera frugiperda (Lepidoptera : Noctuidae), on resident communities of pest and natural enemies in maize fields in Kenya. Agronomy, 11, 1074. https://doi.org/10.3390/agronomy11061074

    Article  Google Scholar 

  • Svensson, E., Sinervo, B., & Comendant, T. (2001). Density-dependent competition and selection on immune function in genetic lizard morphs. Proceedings of the National Academy of Sciences of the USA, 98, 12561–12565.

    Article  CAS  Google Scholar 

  • Tardy, O., Masse, A., Pelletier, F., Mainguy, J., & Fortin, D. (2014). Density-dependent functional responses in habitat selection by two hosts of the raccoon rabies virus variant. Ecosphere, 5, 132. https://doi.org/10.1890/ES14-00197.1

    Article  Google Scholar 

  • Tefera, T. (2004). Lepidopterous stem borers of sorghum and their natural enemies in eastern Ethiopia. Tropical Science, 44, 128–130. https://doi.org/10.1002/ts.153

    Article  Google Scholar 

  • Teng, H., & Apperson, C. S. (2000). Development and survival of immature Aedes albopictus and Aedes triseriatus (Diptera : Culicidae ) in the laboratory : Effects of density, food and competition on response to temperature. Journal of Medical Entomology, 37, 40–52. https://doi.org/10.1603/0022-2585-37.1.40

    Article  PubMed  CAS  Google Scholar 

  • Tilman, D. (1982). Resource competition and community structure. Monogr. Pop. Biol, 17 Princeton University Press, Princeton, N.J. 296p.

  • Underwood, N. (2010). Density dependence in insect performance within individual plants : Induced resistance to Spodoptera exigua in tomato. Oikos, 119, 1993–1999. https://doi.org/10.1111/j.1600-0706.2010.18578.x

    Article  Google Scholar 

  • Van den Berg, J., Van Rensburg, J. B. J., & Pringle, K. L. (1991). Comparative injuriousness of Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Pyralidae) on grain sorghum. Bulletin of Entomological Research, 81, 137–142. https://doi.org/10.1017/S0007485300051191

    Article  Google Scholar 

  • Van Hamburg, H. (1980). The grain-sorghum stalk-borer, Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae): survival and location of larvae at different infestation levels in plants of different ages. Journal of the Entomological Society of Southern Africa, 43, 71–76.

    Google Scholar 

  • Van Hamburg, H., & Hassel, M. (1984). Density dependence and the augmentative release of egg parasitoids against graminaceous stalkborers. Ecological Entomology, 9, 101–108.

    Article  Google Scholar 

  • Verhoeven, K. J. F., Simonsen, K. L., & McIntyre, L. M. (2005). Implementing false discovery rate control: Increasing your power. Oikos, 108, 643–647.

    Article  Google Scholar 

  • Werner, E. E., & Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393–425. https://doi.org/10.1146/annurev.es.15.110184.002141

    Article  Google Scholar 

  • Wissinger, S. A. (1989). Seasonal variation in the intensity of competition and predation among dragonfly larvae. Ecology, 70, 1017–1027. https://doi.org/10.2307/1941370

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Academic Exchange Service (DAAD) for funding the PhD fellowship under the grant number 91636630, and the University of Nairobi and icipe Capacity Building Program (ARPPIS) for hosting the PhD student. This research was funded by the ‘Institut de Recherche pour le Développement’ (IRD)-France through the IRD Collaborative Research project (grant number B4405B) and the integrated pest management strategy to counter the threat of invasive fall armyworm to food security in eastern Africa (FAW-IPM) (grant number DCI-FOOD/2017/) financed through the European Union. We also acknowledge the financial support for this research by the following organizations and agencies: the UK’s Department for International Development (DFID), the Swedish International Development Cooperation Agency (SIDA), the Swiss Agency for Development and Cooperation (SDC), and the Kenyan Government. Thanks are also due to the stemborer rearing unit at the ARCU-icipe, especially to Josphat Akhobe and John Buluma, for rearing and supplying insect larvae and artificial diets. Thanks also to Fritz Schulthess for his critical review of the manuscript and his English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonoukpoè Mawuko Sokame.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokame, B.M., Malusi, P., Subramanian, S. et al. Do the invasive Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and the maize lepidopteran stemborers compete when sharing the same food?. Phytoparasitica 50, 21–34 (2022). https://doi.org/10.1007/s12600-021-00952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-021-00952-6

Keywords

Navigation