Skip to main content
Log in

Bt cotton producing Cry1Ac and Cry2Ab does not harm the parasitoid Aenasius arizonensis (Girault): a host-mediated tritrophic assay

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Transgenic crops with genes from Bacillus thuringiensis (Bt) Berliner, a soil bacterium producing δ-endotoxin that is lethal to several phytophagous insects. Concerns related to possible effects of Cry proteins expressed in transgenic Bt crops on non-target organisms need to be addressed for environment risk assessment. Aenasius arizonensis (Girault) is the most important koinobiont parasitoid of cotton mealybug, Phenacoccus solenopsis Tinsley. Consequently, the impact of transgenic Bt cotton having dual toxins (Cry1Ac and Cry2Ab) on the parasitoid, A. arizonensis was studied through host mediated tritrophic analysis. Non-significant differences were observed for developmental duration from oviposition to adult emergence, proportion of adults emerged, proportion of females in progeny and longevity of A. arizonensis when reared on P. solenopsis offered with Bt cotton or non-Bt cotton leaves. The parasitism of mealybug nymphs and adults by A. arizonensis did not differ significantly on cotton with or without toxins. Despite higher expression of Cry1Ac and Cry2Ab toxins in Bollgard II cotton leaves, Cry proteins were not detected in the host, P. solenopsis or the parasitoid, A. arizonensis. Our study thus showed that Bt cotton having dual toxins (Cry1Ac/Cry2Ab) had no noticeable impact on development, longevity, parasitism rate and proportion of females in progeny of the parasitoid, A. arizonensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdin, Z., Arif, M. J., Gogi, M. D., Arshad, M., Hussain, F., Abbas, S. K., Shaina, H., & Manzoor, A. (2012). Biological characteristics and host stage preference of mealybug parasitoid Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae). Pakistan Entomologist, 34, 47–50.

    Google Scholar 

  • Adamczyk Jr., J. J., Adams, L. C., & Hardee, D. D. (2001). Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. Journal of Economic Entomology, 94, 1589–1593.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Alfageme, F., Maharramov, J., Carrillo, L., Vandenabeele, S., Vercammen, D., Frank, B. V., & Smagghe, G. (2011). Potential use of a Serpin from Arabidopsis for Pest control. PLoS One, 6, e20278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azimi, S., Ashouri, A., Tohidfar, M., & Hassanlouei, R. T. (2012). Effect of Iranian Bt cotton on Encarsia formosa, parasitoid of Bemisia tabaci. International Research Journal of Applied and Basic Sciences, 3, 2248–2251.

    CAS  Google Scholar 

  • Azimi, S., Rahman, S., Tohidfar, M., Ashouri, A., Bandani, A., & Hassanlouei, R. T. (2014). Interaction between Bt-transgenic cotton and the whitefly’s parasitoid, Encarsia formosa (Hymenoptera: Aphelinidae). Journal of Plant Protection Research, 54, 272–278. https://doi.org/10.2478/jppr-2014-0041.

    Article  Google Scholar 

  • Benedict, J. H., Sachs, E. S., Altman, D. W., Deaton, W. R., Kohel, R. J., Ring, D. R., & Berberich, S. A. (1996). Field performance of cotton expressing transgenic Cry1A insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Economic Entomology, 89, 230–238.

    Article  Google Scholar 

  • Bernal, C. C., Aguda, R. M., & Cohen, M. B. (2003). Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomologia Experimentalis et Applicata, 102, 21–28.

    Article  Google Scholar 

  • Burgio, G., Dinelli, G., Marotti, I., Zurla, M., Bosi, S., & Lanzoni, A. (2011). Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape in laboratory conditions. Bulletin of Entomological Research, 101, 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Burgio, G., Lanzoni, A., Accinelli, G., Dinelli, G., Bonetti, A., Marotti, I., & Ramilli, F. (2007). Evaluation of Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape. Bulletin of Entomological Research, 97, 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H. Y., Run-Xin, C. A. O., & Zai-Fu, X. U. (2010). First record of Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae), a parasitoid of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) from China. Journal of Environmental Entomology, 32, 280–282.

    Google Scholar 

  • Chen, M., Zhao, J. Z., Shelton, A. M., Cao, J., & Earle, E. D. (2008). Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae). Transgenic Research, 17, 545–555.

    Article  CAS  PubMed  Google Scholar 

  • Crawley, M. J. (1993). GLIM for ecologists. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Digilio, M. C., Sasso, R., Di Leo, M. G., Iodice, L., Monti, M. M., Santeroma, R., Arpaoa, S., & Gurrieri, E. (2012). Interactions between Bt-expressing tomato and non-target insects: The aphid Macrosiphum euphorbiae and its natural enemies. Journal of Plant Interactions, 7, 71–77.

    Article  CAS  Google Scholar 

  • Dong, H. Z., & Li, W. J. (2007). Variability of endotoxin expression in Bt transgenic cotton. Journal of Agronomy and Crop Science, 193, 21–29.

    Article  CAS  Google Scholar 

  • Dutton, A., Klein, H., Romeis, J., & Bigler, F. (2002). Uptake of Bt toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecological Entomology, 27, 441–447.

    Article  Google Scholar 

  • Dutton, A., Obrist, L., D’Alessandro, M., Diener, L., Muller, M., Romeis, J., & Bigler, F. (2004). Tracking Bt-toxin in transgenic maize to assess the risks on non-target arthropods. IOBC/WPRS Bulletin, 27, 57–63.

    Google Scholar 

  • Eisenring, M., Romeis, J., Naranjo, S. E., & Meissle, M. (2017). Multitrophic cry-protein flow in a dual-gene Bt-cotton field. Agriculture, Ecosystems & Environment., 247, 283–289.

    Article  CAS  Google Scholar 

  • Garcia, M., Ortego, F., Castanera, P., & Farinoa, G. P. (2010). Effects of exposure to the toxin Cry1Ab through Bt maize fed prey on the performance and digestive physiology of the predatory rove beetle Atheta coriara. Biological Control, 55, 225–233.

    Article  CAS  Google Scholar 

  • Gore, J., Leonar, B. R., & Adamczyk Jr., J. J. (2001). Bollworm (Lepidoptera: Noctuidae) survival on Bollgard and Bollgard II cotton flower bud and flower components. Journal of Economic Entomology, 94, 1445–1451.

    Article  CAS  PubMed  Google Scholar 

  • Greenplate, J. T. (1999). Quantification of Bacillus thuringiensis insect control protein CrylAc over time in Bollgard cotton fruit and terminals. Journal of Economic Entomology, 92, 1377–1383.

    Article  CAS  Google Scholar 

  • Guo, J.V., Wan, F.H., Dong, L., Lovei, G. L & Han, A.J. (2008). Tritrophic interactions between Bt cotton, the herbivore Aphis gossypii glover (Homoptera: Aphididae), and the predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). Environmental Entomology, 37, 263–270.

  • Harwood, J. D., Wallin, W. G., & Obrycki, J. J. (2002). Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: Molecular evidence from a transgenic corn agroecosystem. Molecular Ecology, 14, 2815–2823.

    Article  CAS  Google Scholar 

  • Hayat, M. (2009). Description of a new species of Aenasius Walker (Hymenoptera: Encyrtidae) India. Biosystematica, 3, 21–26.

    Google Scholar 

  • Hilbeck, A., Moar, W. J., Pusztai-Carey, M., Filippinni, A., & Bigler, F. (1999). Prey mediated effects of Cry1Ab toxin and protoxin and Cry2A protoxin on the predator Chrysoperla carnea. Entomologia Experimentalis et Applicata, 91, 305–316.

    Article  CAS  Google Scholar 

  • Holt, H. (1998). Season-long monitoring of transgenic cotton plants-development of an assay for the quantification of Bacillus thuringiensis insecticidal protein. In: The Ninth Australian Cotton Conference Proceedings, pp. 331–35. Australian Cotton Growers’ Research Association, Australia.

  • IBM Corp. (2013). IBM SPSS statistics for windows, version 22.0. Armonk, New York, USA.

  • James, C. (2018). Global Status of Commercialized Biotech/GM crops in 2018: ISAAA Briefs No. 54. International Service for the Acquisition of Agri-biotech applications (ISAAA), Ithaca, NY.

  • Karmakar, P., & Shera, P. S. (2018). Seasonal and biological interactions between Aenasius arizonensis and its host Phenacoccus solenopsis. Phytoparasitica, 46, 661–670.

    Article  Google Scholar 

  • Khan, M., Quade, A., Byers, K., Hall, Z. & Grams, R. (2012). Record of Aenasius bambawalei Hayat, a parasitoid of solenopsis mealybug, in Australia. In: Proc 16th Australian cotton conference. Cotton Research and Development Corporation. Queensland, Australia.

  • Khuhro, S. N., Kalroo, A. M., & Mahmood, R. (2011). Present status of mealybug Phenacoccus solenopsis (Tinsley) on cotton and other plants in Sindh (Pakistan). CABI, 45, 268–271.

    Google Scholar 

  • Kranthi, K. R., Naidu, S., Dhawad, C. S., Tatwawadi, A., Mate, K., Patil, E., Bharose, A. A., Behere, G. T., & Kranthi, S. (2005). Temporal and intra-plant variability of CrylAc expression in Bt cotton arid its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Current Science, 89, 291–298.

    CAS  Google Scholar 

  • Kranthi, S., Dhawad, C. S., Naidu, S., Bharose, A. A., Chaudhary, A., Sangode, V., Nehare, S. K., Bajaj, S. R., & Kranthi, K. R. (2009). Susceptibility of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) to the Bacillus thuringiensis toxin Cry2Ab before and after the introduction of Bollgard-II. Crop Protection, 28, 371–375.

    Article  CAS  Google Scholar 

  • Kumar, R., Tian, J. C., Naranjo, S. E., & Shelton, A. M. (2014). Effects of Bt cotton on Thrips tabaci (Thysanoptera: Thripidae) and its predator, Orius insidiosus (Hemiptera: Anthocoridae). Journal of Economic Entomology, 107, 927–932.

    Article  PubMed  Google Scholar 

  • Kumar, V., Dhawan, A. K., & Shera, P. S. (2015). Transgenic cotton in India: Ten years and beyond pp. In B. Singh, R. Arora, & S. S. Gosal (Eds.), Biological and molecular approaches in Pest management (pp. 202–227). Jodhpur: Scientific Publishers.

    Google Scholar 

  • Lawo, N. C., Wackers, F. L., & Romeis, J. (2009). Indian Bt cotton varieties do not affect the performance of cotton aphids. PLoS One, 4, 4804.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, X., Chen, X., Romeis, J., Yin, X., & Peng, Y. (2015). Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). Scientific Reports, 5, 7679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lundgren, J. G., & Wiedenmann, R. N. (2005). Tritrophic interactions among Bt (Cry3Bb1) corn, aphid prey, and the predator Coleomegilla maculata (Coleoptera: Coccinellidae). Environmental Entomology, 34, 1621–1625.

    Article  Google Scholar 

  • Mahmood, R. (2008). Breakthrough in biological control of mealybug in Pakistan. Biocontrol News Information, 29, 38–39.

    Google Scholar 

  • Meissle, M., & Romeis, J. (2009). The web-building spider Theridion impressum (Araneae: Theridiidae) is not adversely affected by Bt maize resistant to corn rootworms. Plant Biotechnology Journal, 7, 645–656.

    Article  CAS  Google Scholar 

  • Meissle, M., & Romeis, J. (2018). Transfer of Cry1Ac and Cry2Ab proteins from genetically engineered Bt cotton to herbivores and predators. Insect Sci., 25, 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Mota, T. A., Fernandes, M. C., de Souza, M. F., da Fionseca, P. R. B., de Quadros, J. C., & Kassab, A. O. (2012). Tritrophic interactions between Bt cotton plants, the aphid Aphis gossypii glover, 1827 (Hemiptera: Aphididae), and the predator, Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae). African Journal of Agricultural Research, 7, 5919–5924.

    Article  Google Scholar 

  • Navarro, M.J. & Hautea, R.A. (2014). Adoption and up take Pathways of GM/Biotech Crops by Small-Scale, Resource-Poor Farmers in China, India, and the Philippines, ISAAA brief no. 48, Ithaca, NY.

  • Niu, L., Mannakkara, A., Qui, L., Hua, X., Lei, C., Juan, L. J., & Ma, W. (2017). Transgenic Bt rice lines producing Cry1Ac, Cry2Aa or Cry1Ca have no detrimental effects on Brown Planthopper and pond wolf spider. Scientific Reports, 7, 1940. https://doi.org/10.1038/s41598-017-02207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu, L., Tian, Z. Y., Liu, H., Zhou, H., Ma, W. H., Lei, C. L., & Chen, L. Z. (2018). Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus. Environmental Pollution, 234, 788–793.

    Article  CAS  PubMed  Google Scholar 

  • Obrist, L., Dutton, A., Albajes, R., & Bigler, F. (2006). Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecological Entomology, 31, 143–154.

    Article  Google Scholar 

  • Obrist, L. B., Klein, H., Dutton, A., & Bigler, F. (2005). Effect of Bt maize on Frankliniella tenuicornis and exposure of thrips predators to prey mediated Bt toxin. Entomologia Experimentalis et Applicata, 115, 409–416.

    Article  Google Scholar 

  • Raps, A., Kehr, J., Gugerli, P., Moar, W. J., Bigler, F., & Hilbeck, A. (2001). Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab. Molecular Ecology, 10, 525–533.

    Article  CAS  PubMed  Google Scholar 

  • Romeis, J., & Meissle, M. (2011). Non-target risk assessment of Bt crops- cry protein uptake by aphids. Journal of Applied Entomology, 135, 1–6.

    Article  CAS  Google Scholar 

  • Romeis, J., Meissle, M., Naranjo, S. E., Li, Y., & Bigler, F. (2014). The end of myth – Bt (Cry1Ab) maize does not harm green lacewings. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00391.

  • Romeis, J., Naranjo, S. E., Meissle, M., & Bigler, F. (2019). Genetically engineered crops help support conservation biological control. Biological Control, 130, 138–154.

    Article  Google Scholar 

  • Romeis, J., Richard, L. H., Marco, P. C., Keri, C., Adinda, D. S., Gatehouse, A. M. R., Herman, R. A., Huesing, J. E., Mclean, A. M., Raybould, A., & Shelton, A. M. (2011). Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Research, 20, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Schuler, T. H., Clark, A. J., Clark, S. J., Poppy, G. M., Stewart, C. N., & Denholm, I. (2005). Laboratory studies of the effects of reduced prey choice caused by Bt plants on a predatory insect. Bulletin of Entomological Research, 95, 243–247.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, H. C., Arora, R., & Pampapathy, G. (2007). Influence of transgenic cottons with Bacillus thuringiensis cry1Ac gene on the natural enemies of Helicoverpa armigera. Biological Control, 52, 469–489.

    Google Scholar 

  • Shera, P. S., & Arora, R. (2016). Survival and development of spotted bollworm, Earias vittella (Fabricius) (Lepidoptera: Nolidae) on different transgenic Bt and isogenic non-Bt cotton genotypes. Phytoparasitica, 44, 99–113.

    Article  CAS  Google Scholar 

  • Shera, P. S., & Karmakar, P. (2018). Effect of mating combinations on the host parasitization and sex allocation in solitary endoparasitoid, Aenasius arizonensis (Girault) (Hymenoptera: Encyrtidae). Biocontrol Science and Technology, 28, 46–61.

    Article  Google Scholar 

  • Shera, P.S., Karmakar, P., Sharma, S. & Sangha, K.S. (2018). Impact of Bt cotton expressing single (Cry1Ac) and dual toxins (Cry1Ac and Cry2Ab) on the fitness of the predator, Chrysoperla zastrowi sillemi (Esben-Petersen): Prey mediated tritrophic analysis. Egyptian Journal of Biological Pest Control, https://doi.org/10.1186/s41938-018-0102-8.

  • Simon, A. R., de Maagd, R. A., Avilla, C., Bakker, P. L., Molthoff, J., Zamora, J. E. G., & Ferre, J. (2006). Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Applied Environmental Microbiology, 72, 1595–1603.

    Article  CAS  Google Scholar 

  • Souissi, R., & Le Ru, B. (1997). Comparative life table statistics of Apoanagyrus lopezi reared on the cassava mealybug Phenacoccus manihoti fed on four host plants. Entomologia Experimentalis et Applicata, 36, 113–119.

    Article  Google Scholar 

  • Stewart, S. D., Adamczyk Jr., J. J., Knighten, K. S., & Davis, F. M. (2001). Impact of Bt cotton expressing one or two proteins of Bacillus thuringiensis on growth and survival of noctuid larvae. Journal of Economic Entomology, 94, 752–760.

    Article  CAS  PubMed  Google Scholar 

  • Tian, J. C., Wang, X. P., Chen, Y., Romeis, J., Naranjos, S. E., Hellmich, R. L., Wang, P., & Shelton, A. M. (2018). Bt cotton producing Cry1Ac and Cry2Ab does not harm two parasitoids, Cotesia marginiventris and Copidosoma floridanum. Scientific Reports, 8, 307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres, J. B., & Ruberson, J. R. (2008). Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Research, 17, 345–354.

    Article  CAS  PubMed  Google Scholar 

  • Torres, J. B., Ruberson, J. R., & Adang, M. J. (2006). Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: A tritrophic analysis. Agricultural and Forest Entomology, 8, 191–202.

    Article  Google Scholar 

  • Wilson, K., & Hardy, I. C. W. (2002). Statistical analysis of sex ratios: An introduction. In I. C. W. Hardy (Ed.), Sex ratios: Concepts and research methods (pp. 48–92). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Wu, H., Zhang, Y., Liu, P., Xie, J., He, Y., Deng, C., Clercq, P., & Pang, H. (2014). Effects of transgenic Cry1Ac + CpTi cotton on non-target mealybug pest Ferrisia virgata and its predator Cryptolaemus montrouzieri. PLoS One, 9, e95537.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamane, T., Goenaga, J., Rönn, J. L., & Arnqvist, G. (2015). Male seminal fluid substances affect sperm competition success and female reproductive behavior in a seed beetle. PLoSOne., 10, e0123770. https://doi.org/10.1371/journal.pone.0123770.

    Article  CAS  Google Scholar 

  • Zhang, G. F., Wan, F. H., Lövei, G. L., Liu, W. X., & Guo, J. Y. (2006). Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environmental Entomology, 35, 143–150.

    Article  CAS  Google Scholar 

  • Zhao, Y., Niu, Y. M. L., Ma, W., Mannakkara, A., Chen, L., & Lei, C. (2013). Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/epsps does not harm the predator Propylaea japonica through its prey Aphis gossypii. Agriculture Ecosystems and Environment, 179, 163–167.

    Article  CAS  Google Scholar 

  • Zhao, Y., Zhang, S., Luo, J. Y., Wang, C. Y., Lv, L. M., Wang, X. P., Cui, J. J., & Lei, C. L. (2016). Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica. Science Reporter, 6, 20368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The investigators are grateful to DST-FIST (Project no. SR/FST/LSI/636/2015(C)) for providing funds to purchase instruments used in the research work. The necessary facilities provided by Dr. Vijay Kumar, Principal Entomologist, Department of Entomology, Punjab Agricultural University, Ludhiana are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Shera.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shera, P.S., Karmakar, P., Sharma, S. et al. Bt cotton producing Cry1Ac and Cry2Ab does not harm the parasitoid Aenasius arizonensis (Girault): a host-mediated tritrophic assay. Phytoparasitica 49, 569–578 (2021). https://doi.org/10.1007/s12600-021-00908-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-021-00908-w

Keywords

Navigation