Skip to main content

Advertisement

Log in

Overexpression of a RNA silencing suppressor, B2 protein encoded by Flock House virus, in tobacco plants results in tolerance to salt stress

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

RNA silencing is an evolutionarily conserved defense response against virus invasion and suppression of silencing is a counter-defense mechanism acquired by viruses. The B2 protein encoded by insect Flock House virus (FHVB2) is a well-known RNA silencing suppressor (RSS). It is capable of reversing the suppression of GFP reporter gene in planta. In this study the effect of point mutation and deletions of FHVB2 on the in planta RSS activity was quantified and validated. The results showed drastic reduction in RSS activity of point mutant and deletion constructs. It is known that viruses like Cucumber mosaic virus can enhance the ability of plants to tolerate abiotic stress although the underlying mechanism is not known. Since the non-plant virus encoded FHVB2 is functionally similar to Cucumber mosaic virus encoded 2b and can act as a RSS in plants, it was used to understand if there is any role of host RNA silencing activity in imparting stress tolerance. FHVB2 was overexpressed in tobacco and transgenics analyzed for response to different abiotic stress conditions. The transgenic plants could tolerate high concentrations of salt and showed enhanced accumulation of proline. Transient assays using point mutant and deletion constructs indicate that functional RSS activity is not required for salt tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar, E., Cutrona, C., del Toro, F. J., Vallarino, J. G., Osorio, S., Pérez-Bueno, M. L., Barón, M., Chung, B. N., Canto, T., & Tenllado, F. (2017). Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. Plant, Cell & Environment, 40, 2909–2930.

    CAS  Google Scholar 

  • Ahmed, C. B., Magdich, S., Rouina, B. B., Sensoy, S., Boukhris, M., & Abdullah, F. B. (2011). Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids, 40, 565–573.

    PubMed  Google Scholar 

  • Aigner, A. (2006). Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct application of siRNAs. Journal of Biotechnology, 124, 12–25.

    CAS  PubMed  Google Scholar 

  • Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences USA, 95, 13079–13084.

    CAS  Google Scholar 

  • Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24, 1.

  • Atkinson, N. J., Lilley, C. J., & Urwin, P. E. (2013). Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiology, 162, 2028–2041.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banu, M. N. A., Hoque, M. A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology, 166, 146–156.

    CAS  PubMed  Google Scholar 

  • Bates, E. J., & Saggerson, E. D. (1979). A study of the glycerol phosphate acyltransferase and dihydroxyacetone phosphate acyltransferase activities in rat liver mitochondrial and microsomal fractions. Relative distribution in parenchymal and non-parenchymal cells, effects of N-ethylmaleimide, palmitoyl-coenzyme a concentration, starvation, adrenalectomy and anti-insulin serum treatment. Biochemical Journal, 182, 751–762.

    CAS  PubMed Central  Google Scholar 

  • Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.

    CAS  PubMed  Google Scholar 

  • Bivalkar-Mehla, S., Vakharia, J., Mehla, R., Abreha, M., Kanwar, J. R., Tikoo, A., & Chauhan, A. (2011). Viral RNA silencing suppressors (RSS): Novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Research, 155, 1–9.

    CAS  PubMed  Google Scholar 

  • Bostock, R. M. (2005). Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annual Review of Phytopathology, 43, 545–580.

    CAS  PubMed  Google Scholar 

  • Bucher, E., and Prins, M. (2006). RNA silencing: A natural resistance mechanism in plants. In natural resistance mechanisms of plants to viruses (springer), pp. 45-72.

  • Carr, J.P., Donnelly, R., Tungadi, T., Murphy, A.M., Jiang, S., Bravo-Cazar, A., Yoon, J.-Y., Cunniffe, N.J., Glover, B.J., and Gilligan, C.A. (2018). Viral manipulation of plant stress responses and host interactions with insects. In advances in virus research (Elsevier), pp. 177-197.

  • Chao, J. A., Lee, J. H., Chapados, B. R., Debler, E. W., Schneemann, A., & Williamson, J. R. (2005). Dual modes of RNA-silencing suppression by flock house virus protein B2. Nature Structural and Molecular Biology, 12, 952–957.

    CAS  PubMed  Google Scholar 

  • Chinnusamy, V., Zhu, J., & Zhu, J. K. (2006). Salt stress signaling and mechanisms of plant salt tolerance. Genetic Engineering (NY), 27, 141–177.

    CAS  Google Scholar 

  • Csorba, T., Kontra, L., & Burgyán, J. (2015). Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 479, 85–103.

    PubMed  Google Scholar 

  • Das, S. S., & Sanan-Mishra, N. (2014). Comparative analysis of RNAi suppression activity of proteins from two disparate viruses. American Journal of Plant Sciences, 5, 1789–1798.

    CAS  Google Scholar 

  • Davis, T. S., Bosque-Pérez, N. A., Foote, N. E., Magney, T., & Eigenbrode, S. D. (2015). Environmentally dependent host–pathogen and vector–pathogen interactions in the barley yellow dwarf virus pathosystem. Journal of Applied Ecology, 52, 1392–1401.

    Google Scholar 

  • Deivanai, S., Xavier, R., Vinod, V., Timalata, K., & Lim, O. (2011). Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. Journal of Stress Physiology and Biochemistry, 7, 157–174.

    Google Scholar 

  • Eckerle, L. D., & Ball, L. A. (2002). Replication of the RNA segments of a bipartite viral genome is coordinated by a transactivating subgenomic RNA. Virology, 296, 165–176.

    CAS  PubMed  Google Scholar 

  • Encabo, J., Macalalad-Cabral, R., Matres, J. M., Coronejo, S., Jonson, G., Kishima, Y., Henry, A., & Choi, I.-R. (2020). Infection with an asymptomatic virus in rice results in a delayed drought response. Functional Plant Biology, 47, 239–249.

    CAS  PubMed  Google Scholar 

  • Fagard, M., Boutet, S., Morel, J.-B., Bellini, C., & Vaucheret, H. (2000). AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proceedings of the National Academy of Sciences USA, 97, 11650–11654.

    CAS  Google Scholar 

  • Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317–345.

    CAS  Google Scholar 

  • Fauquet, C., & Stanley, J. (2005). Revising the way we conceive and name viruses below the species level: A review of geminivirus taxonomy calls for new standardized isolate descriptors. Archives of Virology, 150, 2151–2179.

    CAS  PubMed  Google Scholar 

  • Fraile, A., & García-Arenal, F. (2016). Environment and evolution modulate plant virus pathogenesis. Current Opinion in Virology, 17, 50–56.

    CAS  PubMed  Google Scholar 

  • Fusaro, A., Barton, D., Nakasugi, K., Jackson, C., Kalischuk, M., Kawchuk, L., Vaslin, M., Correa, R., & Waterhouse, P. (2017). The luteovirus P4 movement protein is a suppressor of systemic RNA silencing. Viruses, 9, 294.

    PubMed Central  Google Scholar 

  • Gupta, D., & Mukherjee, S. K. (2019). Antiviral RNAi mediated plant defense versus its suppression by viruses. Journal of Plant Science and Phytopathology, 3, 001–008.

    Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    CAS  PubMed  Google Scholar 

  • Hily, J. M., Poulicard, N., Mora, M. Á., Pagán, I., & García-Arenal, F. (2016). Environment and host genotype determine the outcome of a plant–virus interaction: From antagonism to mutualism. New Phytologist, 209, 812–822.

    Google Scholar 

  • Horsch, R., Rogers, S., and Fraley, R. (1985). Transgenic plants. In: Cold Spring Harbor Symposia on quantitative biology (cold Spring Harbor laboratory press) pp 433-437.

  • Karjee, S., Islam, M.N., and Mukherjee, S.K. (2008). Screening and identification of virus-encoded RNA silencing suppressors. In RNAi (springer), pp. 187-203.

  • Islam, M. M., Hoque, M. A., Okuma, E., Banu, M. N. A., Shimoishi, Y., Nakamura, Y., & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166, 1587–1597.

    CAS  PubMed  Google Scholar 

  • Ji, L.-H., & Ding, S.-W. (2001). The suppressor of transgene RNA silencing encoded by cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Molecular Plant-Microbe Interactions, 14, 715–724.

    CAS  PubMed  Google Scholar 

  • Katerji, N., Van Hoorn, J., Hamdy, A., Karam, F., & Mastrorilli, M. (1994). Effect of salinity on emergence and on water stress and early seedling growth of sunflower and maize. Agricultural Water Management, 26, 81–91.

    Google Scholar 

  • Keller, P., Lüttge, U., Wang, X.-C., & Büttner, G. (1989). Influence of rhizomania disease on gas exchange and water relations of a susceptible and a tolerant sugar beet variety. Physiological and Molecular Plant Pathology, 34, 379–392.

    Google Scholar 

  • Khan, M. A., & Ungar, I. A. (1985). The role of hormones in regulating the germination of polymorphic seeds and early seedling growth of Atriplex triangularis under saline conditions. Physiologia Plantarum, 63, 109–113.

    CAS  Google Scholar 

  • Kim, V. N. (2005). Small RNAs: Classification, biogenesis, and function. Molecules & Cells (Springer Science & Business Media BV), 19, 1–15.

    CAS  Google Scholar 

  • Kishor, P., Hong, Z., Miao, G. H., Hu, C., & Verma, D. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108, 1387–1394.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kissoudis, C., Chowdhury, R., van Heusden, S., van de Wiel, C., Finkers, R., Visser, R. G., Bai, Y., & van der Linden, G. (2015). Combined biotic and abiotic stress resistance in tomato. Euphytica, 202, 317–332.

    CAS  Google Scholar 

  • Lewsey, M. G., Murphy, A. M., MacLean, D., Dalchau, N., Westwood, J. H., Macaulay, K., Bennett, M. H., Moulin, M., Hanke, D. E., & Powell, G. (2010). Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Molecular Plant-Microbe Interactions, 23, 835–845.

    CAS  PubMed  Google Scholar 

  • Li, H., Li, W. X., & Ding, S. W. (2002). Induction and suppression of RNA silencing by an animal virus. Science, 296, 1319–1321.

    CAS  PubMed  Google Scholar 

  • Llave, C. (2010). Virus-derived small interfering RNAs at the core of plant–virus interactions. Trends in Plant Science, 15, 701–707.

    CAS  PubMed  Google Scholar 

  • Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., & Ferrando, A. A. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.

    CAS  PubMed  Google Scholar 

  • Márquez, L. M., Redman, R. S., Rodriguez, R. J., & Roossinck, M. J. (2007). A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science, 315, 513–515.

    PubMed  Google Scholar 

  • Martinez, C. A., Maestri, M., & Lani, E. G. (1996). In vitro salt tolerance and proline accumulation in Andean potato (< i> Solanum</i> spp.) differing in frost resistance. Plant Science, 116, 177–184.

    CAS  Google Scholar 

  • Matthews, R.E.F., and Hull, R. (2002). Matthews' plant virology (gulf professional publishing).

  • Mauck, K. E., Chesnais, Q., & Shapiro, L. R. (2018). Evolutionary determinants of host and vector manipulation by plant viruses. Advances in Virus Research, 101, 189–250.

    PubMed  Google Scholar 

  • Moissiard, G., & Voinnet, O. (2004). Viral suppression of RNA silencing in plants. Molecular Plant Pathology, 5, 71–82.

    CAS  PubMed  Google Scholar 

  • Morton, E.R., and Fuqua, C. (2012). Laboratory maintenance of agrobacterium. Current protocols in microbiology, chapter 1, Unit3D.1.

  • Munns, R., James, R. A., Sirault, X. R., Furbank, R. T., & Jones, H. G. (2010). New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 61, 3499–3507.

    CAS  PubMed  Google Scholar 

  • Nejat, N., & Mantri, N. (2017). Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Current Issues in Molecular Biology, 23, 1–16.

    PubMed  Google Scholar 

  • Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Frontiers in Plant Science, 6, 723.

    PubMed  PubMed Central  Google Scholar 

  • Prasad, A., Sharma, N., Muthamilarasan, M., Rana, S., & Prasad, M. (2019). Recent advances in small RNA mediated plant-virus interactions. Critical Reviews in Biotechnology, 39, 587–601.

    CAS  PubMed  Google Scholar 

  • Prasch, C. M., & Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162, 1849–1866.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology, 176, 47–54.

    CAS  PubMed  Google Scholar 

  • Rehman, S., Harris, P., & Bourne, W. (1998). Effects of presowing treatment with calcium salts, potassium salts, or water on germination and salt tolerance of Acacia seeds. Journal of Plant Nutrition, 21, 277–285.

    CAS  Google Scholar 

  • Roossinck, M. J. (2011). The good viruses: Viral mutualistic symbioses. Nature Reviews Microbiology, 9, 99–108.

    CAS  PubMed  Google Scholar 

  • Sanan-Mishra, N., Tuteja, N., & Sopory, S. K. (2002). Salinity-and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochemical and Biophysical Research Communications, 296, 1063–1068.

    PubMed  Google Scholar 

  • Scotti, P. D., Dearing, S., & Mossop, D. W. (1983). Flock house virus: A nodavirus isolated from Costelytra zealandica (white) (Coleoptera: Scarabaeidae). Archives of Virology, 75, 181–189.

    CAS  PubMed  Google Scholar 

  • Sharma, N., & Singh, S. K. (2016). Implications of non-coding RNAs in viral infections. Reviews in Medical Virology, 26, 356–368.

    CAS  PubMed  Google Scholar 

  • Silhavy, D., & Burgyán, J. (2004). Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends in Plant Science, 9, 76–83.

    CAS  PubMed  Google Scholar 

  • Singh, G., Korde, R., Malhotra, P., Mukherjee, S., & Bhatnagar, R. K. (2010). Systematic deletion and site-directed mutagenesis of FHVB2 establish the role of C-terminal amino acid residues in RNAi suppression. Biochemical and Biophysical Research Communications, 398, 290–295.

    CAS  PubMed  Google Scholar 

  • Singh, G., Popli, S., Hari, Y., Malhotra, P., Mukherjee, S., & Bhatnagar, R. K. (2009). Suppression of RNA silencing by flock house virus B2 protein is mediated through its interaction with the PAZ domain of Dicer. The FASEB Journal, 23, 1845–1857.

    CAS  PubMed  Google Scholar 

  • Sullivan, C. S., & Ganem, D. (2005). MicroRNAs and viral infection. Molecular Cell, 20, 3–7.

    CAS  PubMed  Google Scholar 

  • Vance, V. B., Berger, P. H., Carrington, J. C., Hunt, A. G., & Shi, X. M. (1995). 5′ proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology, 206, 583–590.

    CAS  PubMed  Google Scholar 

  • Van Munster, M. (2020). Impact of abiotic stresses on plant virus transmission by aphids. Viruses, 12, 216.

    PubMed Central  Google Scholar 

  • Voinnet, O., Lederer, C., & Baulcombe, D. C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 103, 157–167.

    CAS  PubMed  Google Scholar 

  • Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences USA, 96, 14147–14152.

    CAS  Google Scholar 

  • von Caemmerer, S., & Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376–387.

    Google Scholar 

  • Westwood, J. H., McCann, L., Naish, M., et al. (2013). A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. Molecular Plant Pathology., 14, 158–170.

    CAS  PubMed  Google Scholar 

  • Wilson, R. C., & Doudna, J. A. (2013). Molecular mechanisms of RNA interference. Annual Review of Biophysics, 42, 217–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, S. C., Cowan, I. R., & Farquhar, G. D. (1985). Leaf conductance in relation to rate of CO2 assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux densitiy, and ambient partial pressure of CO2 during ontogeny. Plant Physiology, 78, 821–825.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180, 911–921.

    Google Scholar 

  • Zeddam, J.-L., Rodriguez, J. L., Ravallec, M., & Lagnaoui, A. (1999). A Noda-like virus isolated from the sweetpotato pest Spodoptera eridania (Cramer)(Lep.; Noctuidae). Journal of Invertebrate Pathology, 74, 267–274.

    CAS  PubMed  Google Scholar 

  • Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Department of Biotechnology (DBT), Government of India to NSM. KVS and SSD are thankful to DBT and CSIR respectively, for fellowship support.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized and designed by NSM. The experiments were performed, results tabulated and manuscript drafted by SSD and KVS. The manuscript was edited by NSM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Neeti Sanan-Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1.

Generation of FHVB2 overexpression tobacco lines. (A) Map of T-DNA portion of pBI121-B2 plasmid construct used for generating tobacco transgenics (B) Representative photographs to show the different steps of tobacco transformation. (C) Phenotype of wild type and transgenic tobacco plants. (JPG 172 kb)

Supplementary Fig. 2.

Analysis of tobacco plants constitutively overexpressing FHVB2. (A) PCR was performed to confirm the stable inheritance and presence of FHVB2 gene in tobacco lines. The agarose gel shows PCR amplified band of 321 bp corresponding to the FHVB2 gene. Lane 1. 1 kb DNA ladder (Fermentas); Lanes 2–6, independently transformed tobacco lines; Lane 7, positive control. (B) RT- PCR was performed to confirm the expression of FHVB2 gene in transgenic plants. The agarose gel shows amplified band of 321 bp corresponding to the FHVB2 transcript. Lane 1. 100 bp DNA ladder (Fermentas); Lanes 2–5, independently transformed tobacco lines; Lane 7, negative control. (C) Western Blotting with FHVB2 specific antibodies was performed to confirm the expression of FHVB2 protein in transgenic plants. The total protein samples were run on 12% SDS-PAGE and the blot was detected using rabbit anti-FHVB2 antibodies. Lane 1. positive control; Lane 2. WT plant; Lanes 3–8, independently transformed tobacco lines. (JPG 87 kb)

Supplementary Fig. 3.

Chlorophyll leaf disc assay to observe the effect of salt stress. (A) Representative pictures to show the salt stress induced senescence of leaf pieces obtained from wild type (WT) tobacco leaves infiltrated with B2 (FHVB2), B2(R53Q)m (FHVB2(R53Q)m), CΔ50 (FHVB2-CΔ50), CΔ100 (FHVB2-CΔ100), CΔ150 (FHVB2-CΔ150), CΔ200 (FHVB2-CΔ200). The leaf pieces were collected at 3 dpi and floated on 50, 100, 200, 300 and 400 mM NaCl solution, respectively, for 72 h. (B) Plot to show the chlorophyll content measured from the respective leaf discs exposed to various NaCl concentrations and normalized with respective infiltrated controls kept in water. The dotted line represents the normalized control. Asterisks indicate significant differences as calculated using ANOVA (*p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.001). (JPG 285 kb)

Supplementary Fig. 4

(JPG 75 kb)

Supplementary Table 1

(DOCX 18 kb)

Supplementary Table 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, K.V., Das, S.S. & Sanan-Mishra, N. Overexpression of a RNA silencing suppressor, B2 protein encoded by Flock House virus, in tobacco plants results in tolerance to salt stress. Phytoparasitica 49, 299–316 (2021). https://doi.org/10.1007/s12600-020-00847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00847-y

Keywords

Navigation