Skip to main content
Log in

Introducing electrolytic electrochemical polymerization for constructing protective layers on Ni-rich cathodes of Li-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

LiNi0.8Co0.1Mn0.1O2 (NCM811) is the most promising cathode for high-energy Li-ion batteries, despite its poor cycling stability that originates from the reactions that occur with the electrolyte. Herein, to solve this interfacial issue, a facile electrolytic electrochemical polymerization process was introduced in this paper, and a uniform conductive electrolyte interface (polyaniline) was successfully constructed on the surface of the NCM811 porous electrode (PANI-NCM), which facilitated the charge transfer during charge/discharge. The side reactions at the interface between the cathode and the electrolyte are suppressed, and thereby, the cycling performance and rate capability are considerably improved. PANI-NCM delivers an initial capacity of 157.2 mAh·g−1 as well as excellent cyclability (capacity retention of 88% after 500 cycles at 2C), whereas the capacity of the bare NCM811 has dropped to 31.3 mAh·g−1. In addition, polypyrrole and polythiophene also can be formed through electrolytic electrochemical polymerization process, which provides a practicable tactic to modify the interfacial stability of cathodes for high-energy Li-ion batteries.

Graphical abstract

摘要

LiNi0.8Co0.1Mn0.1O2 (NCM811) 作为高能锂离子电池最有前途的正极材料, 其由于与电解质发生反应而导致循环稳定性较差。 为了解决这个界面问题, 本文引入了一种简便的电解电化学聚合方法, 在NCM811多孔电极表面成功构建了均匀的导电电解质界面 (聚苯胺) (PANI-NCM), 促进充电/放电期间传输, 抑制了正极与电解质界面的副反应, 从而显着提高了循环性能和倍率性能。PANI-NCM 电极表现出157.2 mAh·g−1 的初始容量以及良好的循环性能 (2 C 下 500 次循环后容量保持率为 88%), 而 NCM811电极500次后容量降至 31.3 mAh·g−1。此外, 还可以通过电解电化学聚合过程形成聚吡咯和聚噻吩, 该方法为改善高能锂离子电池正极的界面稳定性提供了可行的策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi JU, Voronina N, Sun YK, Myung ST. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-Ion batteries: yesterday, today, and tomorrow. Adv Energy Mater. 2020;10(42):2002027. https://doi.org/10.1002/aenm.202002027.

    Article  CAS  Google Scholar 

  2. Luo YH, Wei HX, Tang LB, Huang YD, Wang ZY, He ZJ, Yan C, Mao J, Dai K, Zheng JC. Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Mater. 2022;50:274. https://doi.org/10.1016/j.ensm.2022.05.019.

    Article  Google Scholar 

  3. Zhang JX, Wang PF, Bai PX, Wan HL, Liu SF, Hou S, Pu XJ, Xia JL, Zhang WR, Wang ZY, Nan B, Zhang XY, Xu JJ, Wang CS. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv Mater. 2022;34(8):2108353. https://doi.org/10.1002/adma.202108353.

    Article  CAS  Google Scholar 

  4. Zhang JR, Lan ZW, Xi RH, Li YY, Wang JT, Zhang CH. Review on deficiency and modification of high nickel ternary materials for lithium-ion batteries. Chin J Rare Met. 2022;46(3):367. https://doi.org/10.13373/j.cnki.cjrm.XY20090004.

    Article  Google Scholar 

  5. Cheng JX, Su ZL, Zhao T, Pu GG, Li A, Wang L. Performance of cathode material of high-power lithium-ion battery. Chin J Rare Met. 2023;47(12):1756. https://doi.org/10.13373/j.cnki.cjrm.XY21010027.

    Article  Google Scholar 

  6. Chung H, Grenier A, Huang R, Wang X, Lebens-Higgins Z, Doux JM, Sallis S, Song C, Ercius P, Chapman K, Piper LFJ, Cho HM, Zhang M, Meng YS. Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries. Nano Res. 2019;12(9):2238. https://doi.org/10.1007/s12274-019-2494-5.

    Article  CAS  Google Scholar 

  7. Lee W, Muhammad S, Kim T, Kim H, Lee E, Jeong M, Son S, Ryou JH, Yoon WS. New Insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv Energy Mater. 2018;8(4):1701788. https://doi.org/10.1002/aenm.201701788.

    Article  CAS  Google Scholar 

  8. Li Y, Li X, Wang Z, Guo H, Wang J. An Ostwald ripening route towards Ni-rich layered cathode material with cobalt-rich surface for lithium ion battery. Sci China Mater. 2017;61(5):719. https://doi.org/10.1007/s40843-017-9162-3.

    Article  CAS  Google Scholar 

  9. Wood M, Li J, Ruther RE, Du Z, Self EC, Meyer HM III, Daniel C, Belharouak I, Wood DL III. Chemical stability and long-term cell performance of low-cobalt, Ni-rich cathodes prepared by aqueous processing for high-energy Li-ion batteries. Energy Storage Mater. 2020;24:188. https://doi.org/10.1016/j.ensm.2019.08.020.

    Article  Google Scholar 

  10. Lu XJ, Li XY, Duan MY, Hai JK, Liu ST. Preparation of hybrid perovskite-type Li0.33La0.56TiO3 by adding ionic liquids. J Rare Earths. 2023;41(5):758. https://doi.org/10.1016/j.jre.2022.05.003.

    Article  CAS  Google Scholar 

  11. Ahsan Z, Cai ZF, Wang S, Wang HC, Ma YZ, Song GS, Zhang SH, Yang WD, Imran M, Wen C. Enhanced stability and electrochemical properties of lanthanum and cerium co-modified LiVOPO4 cathode materials for Li-ion batteries. J Rare Earths. 2023;41(10):1590. https://doi.org/10.1016/j.jre.2022.09.020.

    Article  CAS  Google Scholar 

  12. Wang JP, Lu YZ, Mushtaq N, Yousaf Shah MAK, Rauf S, Lund PD, Asghar MI. Novel LaFe2O4 spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode. J Rare Earths. 2023;41(3):413. https://doi.org/10.1016/j.jre.2022.04.031.

    Article  CAS  Google Scholar 

  13. Park JW, Park DH, Go S, Nam DH, Oh J, Han YK, Lee H. Malonatophosphate as an SEI- and CEI-forming additive that outperforms malonatoborate for thermally robust lithium-ion batteries. Energy Storage Mater. 2022;50:75. https://doi.org/10.1016/j.ensm.2022.05.009.

    Article  Google Scholar 

  14. Guo F, Xie Y, Zhang Y. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 2022;15(3):2052. https://doi.org/10.1007/s12274-021-3784-2.

    Article  CAS  Google Scholar 

  15. Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou SX, Guo Z, Cho J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-Ion cells. Adv Energy Mater. 2017;7(1):1601507. https://doi.org/10.1002/aenm.201601507.

    Article  CAS  Google Scholar 

  16. Chen Z, Qin Y, Amine K, Sun YK. Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem. 2010;20(36):7606. https://doi.org/10.1039/c0jm00154f.

    Article  CAS  Google Scholar 

  17. Mao G, Yu W, Zhou Q, Li L, Huang Y, Yao Y, Chu D, Tong H, Guo X. Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries. Appl Surf Sci. 2020;531:147245. https://doi.org/10.1016/j.apsusc.2020.147245.

    Article  CAS  Google Scholar 

  18. Fan X, Ou X, Zhao W, Liu Y, Zhang B, Zhang J, Zou L, Seidl L, Li Y, Hu G. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat Commun. 2021;12(1):5320. https://doi.org/10.1038/s41467-021-25611-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ou X, Liu T, Zhong W, Fan X, Guo X, Huang X, Cao L, Hu J, Zhang B, Chu YS. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy. Nat Commun. 2022;13(1):2319. https://doi.org/10.1038/s41467-022-30020-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guan P, Zhou L, Yu Z, Sun Y, Liu Y, Wu F, Jiang Y, Chu D. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J Energy Chem. 2020;43:220. https://doi.org/10.1016/j.jechem.2019.08.022.

    Article  Google Scholar 

  21. Becker D, Borner M, Nolle R, Diehl M, Klein S, Rodehorst U, Schmuch R, Winter M, Placke T. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(20):18404. https://doi.org/10.1021/acsami.9b02889.

    Article  CAS  PubMed  Google Scholar 

  22. Du K, Xie H, Hu G, Peng Z, Cao Y, Yu F. Enhancing the thermal and upper voltage performance of Ni-rich cathode material by a homogeneous and facile coating method: spray-drying coating with nano-Al2O3. ACS Appl Mater Interfaces. 2016;8(27):17713. https://doi.org/10.1021/acsami.6b05629.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Zhang X, Zeng T, Dou A, Zhang P, Su M, Zhou Y, Liu Y. Conversion of residual lithium into fast ionic conductor coating to achieve one-step double modification strategy in LiNi0.8Co0.15Al0.05O2. J Alloys Compd. 2023;931:167638. https://doi.org/10.1016/j.jallcom.2022.167638.

    Article  CAS  Google Scholar 

  24. Zeng TY, Zhang XY, Qu XY, Li MQ, Zhang PP, Su MR, Dou AC, Naveed A, Zhou Y, Liu YJ. Mechanism exploration of enhanced electrochemical performance of single-crystal versus polycrystalline LiNi0.8Mn0.1Co0.1O2. Rare Met. 2022;41(11):3783. https://doi.org/10.1007/s12598-022-02055-5.

    Article  CAS  Google Scholar 

  25. Qu X, Huang H, Wan T, Hu L, Yu Z, Liu Y, Dou A, Zhou Y, Su M, Peng X. An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy. 2022;91:106665. https://doi.org/10.1016/j.nanoen.2021.106665.

    Article  CAS  Google Scholar 

  26. Liu Y, Zeng T, Li G, Wan T, Li M, Zhang X, Li M, Su M, Dou A, Zeng W. The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Storage Mater. 2022;52:534. https://doi.org/10.1016/j.ensm.2022.08.026.

    Article  Google Scholar 

  27. Zha G, Luo Y, Hu N, Ouyang C, Hou H. Surface modification of the LiNi0.8Co0.1Mn0.1O2 cathode material by coating with FePO4 with a yolk-shell structure for improved electrochemical performance. ACS Appl Mater Interfaces. 2020;12(32):36046. https://doi.org/10.1021/acsami.0c07931.

    Article  CAS  PubMed  Google Scholar 

  28. Cho J, Kim TG, Kim C, Lee JG, Kim YW, Park B. Comparison of Al2O3-and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. J Power Sources. 2005;146(1–2):58. https://doi.org/10.1016/j.jpowsour.2005.03.118.

    Article  CAS  Google Scholar 

  29. Dou LT, Hu P, Shang CQ, Wang H, Xiao DD, Ahuja U, Aifantis K, Zhang ZH, Huang ZL. Enhanced electrochemical performance of with SiO2 surface coating via homogeneous precipitation. ChemElectroChem. 2021;8(22):4321. https://doi.org/10.1002/celc.202101230.

    Article  CAS  Google Scholar 

  30. Kang BJ, Joo JB, Lee JK, Choi W. Surface modification of cathodes with nanosized amorphous MnO2 coating for high-power application in lithium-ion batteries. J Electroanal Chem. 2014;728:34. https://doi.org/10.1016/j.jelechem.2014.06.023.

    Article  CAS  Google Scholar 

  31. Zhu W, Huang X, Liu T, Xie Z, Wang Y, Tian K, Bu L, Wang H, Gao L, Zhao J. Ultrathin Al2O3 coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced cycleability at extended voltage ranges. Coatings. 2019;9(2):92. https://doi.org/10.3390/coatings9020092.

    Article  CAS  Google Scholar 

  32. Liu Y, Xie L, Zhang W, Dai Z, Wei W, Luo S, Chen X, Chen W, Rao F, Wang L, Huang Y. Conjugated system of PEDOT:PSS-induced self-doped PANI for flexible zinc-Ion batteries with enhanced capacity and cyclability. ACS Appl Mater Interfaces. 2019;11(34):30943. https://doi.org/10.1021/acsami.9b09802.

    Article  CAS  PubMed  Google Scholar 

  33. Kim J, Lee J, You J, Park MS, Hossain MSA, Yamauchi Y, Kim JH. Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater Horiz. 2016;3(6):517. https://doi.org/10.1039/c6mh00165c.

    Article  CAS  Google Scholar 

  34. Lee S, Lee H, Ha N, Lee JT, Jung J, Eom K. In Batteria electrochemical polymerization to form a protective conducting cayer on Se/C cathodes for high-performance Li–Se batteries. Adv Funct Mater. 2020;30(19):2000028. https://doi.org/10.1002/adfm.202000028.

    Article  CAS  Google Scholar 

  35. Zhang Y, Kim CS, Song HW, Chang SJ, Kim H, Park J, Hu S, Zhao K, Lee S. Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition. Energy Storage Mater. 2022;48:1. https://doi.org/10.1016/j.ensm.2022.03.001.

    Article  Google Scholar 

  36. Liu X, Zhou X, Liu Q, Diao J, Zhao C, Li L, Liu Y, Xu W, Daali A, Harder R. Multiscale understanding of surface structural effects on high-temperature operational resiliency of layered oxide cathodes. Adv Mater. 2022;34(4):2107326. https://doi.org/10.1002/adma.202107326.

    Article  CAS  Google Scholar 

  37. Yao W, Xu M, Qiu W, Wang J, Sun Y, Xu J, Zhang Q. Ultralight PEDOT functionalized separators toward high-performance lithium metal anodes. ChemElectroChem. 2021;8(15):2836. https://doi.org/10.1002/celc.202100677.

    Article  CAS  Google Scholar 

  38. Li B, Rousse G, Zhang L, Avdeev M, Deschamps M, Abakumov AM, Tarascon JM. Constructing “Li-rich Ni-rich” oxide cathodes for high-energy-density Li-ion batteries. Energy Environ Sci. 2023;16(3):1210. https://doi.org/10.1039/D2EE03969A.

    Article  CAS  Google Scholar 

  39. Li B, Sougrati MT, Rousse G, Morozov AV, Dedryvère R, Iadecola A, Senyshyn A, Zhang L, Abakumov AM, Doublet ML. Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nat Chem. 2021;13(11):1070. https://doi.org/10.1038/s41557-021-00775-2.

    Article  CAS  PubMed  Google Scholar 

  40. Cui Z, Li X, Bai X, Ren X, Ou X. A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials. Energy Storage Mater. 2023. https://doi.org/10.1016/j.ensm.2023.02.003.

    Article  Google Scholar 

  41. Li D, Zhang B, Ye L, Xiao Z, Ming L, Ou X. Regeneration of high-performance Li1.2Mn0.54Ni0.13Co0.13O2 cathode material from mixed spent lithium-ion batteries through selective ammonia leaching. J Cleaner Prod. 2022;349:131373. https://doi.org/10.1016/j.jclepro.2022.131373.

    Article  CAS  Google Scholar 

  42. Muralidharan N, Essehli R, Hermann RP, Amin R, Jafta C, Zhang J, Liu J, Du Z, Meyer HM 3rd, Self E, Nanda J, Belharouak I. Lithium iron aluminum nickelate, LiNixFeyAlzO2-new sustainable cathodes for next-generation cobalt-free Li-ion batteries. Adv Mater. 2020;32(34):2002960. https://doi.org/10.1002/adma.202002960.

    Article  CAS  Google Scholar 

  43. Xu GL, Liu Q, Lau KKS, Liu Y, Liu X, Gao H, Zhou X, Zhuang M, Ren Y, Li J, Shao M, Ouyang M, Pan F, Chen Z, Amine K, Chen G. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat Energy. 2019;4(6):484. https://doi.org/10.1038/s41560-019-0387-1.

    Article  CAS  Google Scholar 

  44. Wang Q, Yan J, Fan Z, Wei T, Zhang M, Jing X. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors. J Power Sources. 2014;247:197. https://doi.org/10.1016/j.jpowsour.2013.08.076.

    Article  CAS  Google Scholar 

  45. Zhang K, Xu Y, Lu Y, Zhu Y, Qian Y, Wang D, Zhou J, Lin N, Qian Y. A graphene oxide-wrapped bipyramidal sulfur@polyaniline core–shell structure as a cathode for Li–S batteries with enhanced electrochemical performance. J Mater Chem A. 2016;4(17):6404. https://doi.org/10.1039/c6ta01118g.

    Article  CAS  Google Scholar 

  46. Razalli RL, Abdi Mahnaz M, Tahir PM, Moradbak A, Sulaiman Y, Heng LY. Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization. RSC Adv. 2017;7(41):25191. https://doi.org/10.1039/c7ra03379f.

    Article  CAS  Google Scholar 

  47. Deng H, Yao L, Huang QA, Su Q, Zhang J, Zhang F, Du G. Facile assembly of a S@carbon nanotubes/polyaniline/graphene composite for lithium–sulfur batteries. RSC Adv. 2017;7(16):9819. https://doi.org/10.1039/c6ra28288a.

    Article  CAS  Google Scholar 

  48. Ma J, Xu G, Li Y, Ge C, Li X. An in situ chemically and physically confined sulfur-polymer composite for lithium–sulfur batteries with carbonate-based electrolytes. Chem Commun. 2018;54(100):14093. https://doi.org/10.1039/c8cc07623e.

    Article  CAS  Google Scholar 

  49. Shi JL, Xiao DD, Zhang XD, Yin YX, Guo YG, Gu L, Wan LJ. Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Res. 2017;10:4201. https://doi.org/10.1007/s12274-017-1489-3.

    Article  CAS  Google Scholar 

  50. Kalluri S, Yoon M, Jo M, Liu HK, Dou SX, Cho J, Guo Z. Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv Mater. 2017;29(48):1605807. https://doi.org/10.1002/adma.201605807.

    Article  CAS  Google Scholar 

  51. Zhao J, Huang R, Gao W, Zuo JM, Zhang XF, Misture ST, Chen Y, Lockard JV, Zhang B, Guo S. An ion-exchange promoted phase transition in a Li-excess layered cathode material for high-performance lithium ion batteries. Adv Energy Mater. 2015;5(9):1401937. https://doi.org/10.1002/aenm.201401937.

    Article  CAS  Google Scholar 

  52. McColl K, House RA, Rees GJ, Squires AG, Coles SW, Bruce PG, Morgan BJ, Islam MS. Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes. Nat Commun. 2022;13(1):5275. https://doi.org/10.1038/s41467-022-32983-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang SS. Understanding of performance degradation of cathode material operating at high potentials. J Energy Chem. 2020;41:135. https://doi.org/10.1016/j.jechem.2019.05.013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52172227 and Z190010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katerina E. Aifantis or Pu Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4960 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, LT., Li, B., Nie, HL. et al. Introducing electrolytic electrochemical polymerization for constructing protective layers on Ni-rich cathodes of Li-ion batteries. Rare Met. 43, 2536–2545 (2024). https://doi.org/10.1007/s12598-024-02651-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-024-02651-7

Keywords

Navigation