Skip to main content
Log in

Controllable nucleation and deformation of skyrmions on surface of magnetic nanotubular monolayer

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnetic skyrmions emerge when the energy of ferromagnetic exchange interaction promoting parallel alignment of spins enters in competition with energies favoring non-collinear alignment of spins such as Dzyaloshinskii–Moriya interaction (DMI), long-rang dipole–dipole interaction (DDI), or higher-order exchange interactions. We perform an unbiased Monte Carlo simulation to study the DMI-based skyrmion nucleation and stabilization on the surface of magnetic nanotubular monolayer controlled by tuning constants of DDI (g) and next-nearest-neighbor antiferromagnetic exchange interaction (j’) with appropriate balance. Without g and j’, the loosely distributed skyrmions initially nucleate on the surface of nanotube approaching to the magnetic field (h) direction with increasing h in the intermediate range. Then, the skyrmion size, shape, density, distribution and crystal structure, as well as its driven field range, are tailored by g and j’. This work demonstrates the skyrmion nucleation mechanisms in three-dimensional magnetic nanostructures with curvature effect and multiple interactions, serving as a benchmark for a guide to experimentalists for preparation of samples in magnetic skyrmion states.

Graphical abstract

摘要

当促使自旋平行排列的铁磁交换作用能与促使自旋非共线排列的相互作用能, 如Dzyaloshinskii-Moriya相互作用能 (DMI) 、长程偶极-偶极相互作用能 (DDI) 或更高阶的相互作用能之间产生竞争时, 自旋构型可能会出现斯格明子态。在本文中, 我们采用蒙特卡洛模拟方法, 研究了DDI(g) 和次近邻反铁磁交换作用 (j’) 对磁性纳米管状单层膜表面上的基于DMI的斯格明子的成核和稳定性的影响。结果表明, 当不考虑gj’时, 松散分布的斯格明子会出现在接近于外磁场方向的纳米管表面上。随着gj’的引入, 斯格明子的尺寸、形状、密度、分布和晶体结构, 以及它的驱动场范围都可以被调控。这项工作不仅阐明了在带有曲率和多级相互作用的三维磁性纳米结构中斯格明子的成核和稳定机制, 而且这些结果可以用以指导实验研究者制备带有特定斯格明子态的实际样品。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 2013;8:899. https://doi.org/10.1038/nnano.2013.243.

    Article  CAS  Google Scholar 

  2. Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P. Skyrmion lattice in a chiral magnet. Science. 2009;323(5916):915. https://doi.org/10.1126/science.1166767.

    Article  CAS  PubMed  Google Scholar 

  3. Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y. Real-space observation of a two-dimensional skyrmion crystal. Nature. 2010;465:901. https://doi.org/10.1038/nature09124.

    Article  CAS  PubMed  Google Scholar 

  4. Romming N, Hanneken C, Menzel M, Bickel JE, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R. Writing and deleting single magnetic skyrmions. Science. 2013;341(6146):636. https://doi.org/10.1126/science.1240573.

    Article  CAS  PubMed  Google Scholar 

  5. Sampaio J, Cros V, Rohart S, Thiaville A, Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotech. 2013;8:839. https://doi.org/10.1038/nnano.2013.210.

    Article  CAS  Google Scholar 

  6. Fert A, Cros V, Sampaio J. Skyrmions on the track. Nature Nanotech. 2013;8:152. https://doi.org/10.1038/nnano.2013.29.

    Article  CAS  Google Scholar 

  7. Iwasaki J, Mochizuki M, Nagaosa N. Current-induced skyrmion dynamics in contricted geometries. Nature Nanotech. 2013;8:742. https://doi.org/10.1038/nnano.2013.176.

    Article  CAS  Google Scholar 

  8. Fert A, Reyren N, Cros V. Magnetic skyrmions: advances in physics and potential applications. Nat Rev Mater. 2017;2:17031. https://doi.org/10.1038/natrevmats.2017.31.

    Article  CAS  Google Scholar 

  9. Wiesendanger R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat Rev Mater. 2016;1:16044. https://doi.org/10.1038/natrevmats.2016.44.

    Article  CAS  Google Scholar 

  10. Jiang W, Chen G, Liu K, Zang J, te Velthuis SGE, Hoffmann A. Skyrmions in magnetic multilayers. Phys Rep. 2017;704:1. https://doi.org/10.1016/j.physrep.2017.08.001.

    Article  Google Scholar 

  11. Wei WS, He ZD, Qu Z, Du HF. Dzyaloshinsky-Moriya interaction (DMI)-induced magnetic skyrmion materials. Rare Met. 2021;40(11):3076. https://doi.org/10.1007/s12598-021-01746-9.

    Article  CAS  Google Scholar 

  12. Zhang X, Zhou Y, Song KM, Park TE, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions towards spintronic applications. J Phys Condens Matter 2020;32(14):143001. https://doi.org/10.1088/1361-648X/ab5488.

  13. Yu X, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Mater. 2011;10:106. https://doi.org/10.1038/nmat2916.

    Article  CAS  Google Scholar 

  14. Seki S, Yu XZ, Ishiwata S, Tokura Y. Observation of skyrmions in a multiferroic material. Science. 2012;336(6078):198. https://doi.org/10.1126/science.1214143.

    Article  CAS  PubMed  Google Scholar 

  15. Boulle O, Vogel J, Yang H, Pizzini S, de Souza CD, Locatelli A, Menteş TO, Sala A, Buda-Prejbeanu LD, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif SM, Aballe L, Foerster M, Chshiev M, Auffret S, Miron IM, Gaudin G. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nature Nanotech. 2016;11:449. https://doi.org/10.1038/nnano.2015.315.

    Article  CAS  Google Scholar 

  16. Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz CAF, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George JM, Weigand M, Raabe J, Cros V, Fert A. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotech. 2016;11:444. https://doi.org/10.1038/nnano.2015.313.

    Article  CAS  Google Scholar 

  17. Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated Kagome magnet with uniaxial magnetic anisotropy. Adv Mater. 2017;29(29):1701144. https://doi.org/10.1002/adma.201701144.

    Article  CAS  Google Scholar 

  18. Takagi R, Matsuyama N, Ukleev V, Yu L, White JS, Francoual S, Mardegan JRL, Hayami S, Saito H, Kaneko K, Ohishi K, Ōnuki Y, Arima TH, Tokura Y, Nakajima T, Seki S. Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound. Nat Commun. 2022;13:1472. https://doi.org/10.1038/s41467-022-29131-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu XY, Zhang H, Gawryluk DJ, Zhen ZX, Yu BC, Ju SL, Xie W, Jiang DM, Cheng WJ, Xu Y, Shi M, Pomjakushina E, Zhan QF, Shiroka T, Shang T. Spin order and fluctuations in the EuAl4 and EuGa4 topological antiferromagnets: A μ SR study. Phys Rev B. 2022;105(1):014423. https://doi.org/10.1103/PhysRevB.105.014423.

    Article  CAS  Google Scholar 

  20. Khanh ND, Nakajima T, Yu X, Gao S, Shibata K, Hirschberger M, Yamasaki Y, Sagayama H, Nakao H, Peng L, Nakajima K, Takagi R, Arima TH, Tokura Y, Seki S. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat Nanotechnol. 2020;15:444. https://doi.org/10.1038/s41565-020-0684-7.

    Article  CAS  PubMed  Google Scholar 

  21. Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima TH, Tokura Y. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science. 2019;365(6456):914. https://doi.org/10.1126/science.aau0968.

    Article  CAS  PubMed  Google Scholar 

  22. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4(4):241. https://doi.org/10.1016/0022-3697(58)90076-3.

    Article  CAS  Google Scholar 

  23. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev. 1960;120(1):91. https://doi.org/10.1103/PhysRev.120.91.

    Article  CAS  Google Scholar 

  24. Brinker S, dos Santos DM, Lounis S. Prospecting chiral multisite interactions in prototypical magnetic systems. Phys Rev Research. 2020;2(3):033240. https://doi.org/10.1103/PhysRevResearch.2.033240.

    Article  CAS  Google Scholar 

  25. Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 2011;7:713. https://doi.org/10.1038/nphys2045.

    Article  CAS  Google Scholar 

  26. Hayami S, Motome Y. Néel- and Bloch-type magnetic vortices in Rashba metals. Phys Rev Lett. 2018;121(13):137202. https://doi.org/10.1103/PhysRevLett.121.137202.

    Article  CAS  PubMed  Google Scholar 

  27. Gao S, Rosales HD, Gómez Albarracín FA, Tsurkan V, Kaur G, Fennell T, Steffens P, Boehm M, Čermák P, Schneidewind A, Ressouche E, Cabra DC, Rüegg C, Zaharko O. Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. Nature. 2020;586:37. https://doi.org/10.1038/s41586-020-2716-8.

    Article  CAS  PubMed  Google Scholar 

  28. Rosales HD, Gómez Albarracín FA, Guratinder K, Tsurkan V, Prodan L, Ressouche E, Zaharko O. Anisotropy-driven response of the fractional antiferromagnetic skyrmion lattice in MnSc2S4 to applied magnetic fields. Phys Rev B. 2022;105(22):224402. https://doi.org/10.1103/PhysRevB.105.224402.

    Article  CAS  Google Scholar 

  29. Preißinger M, Karube K, Ehlers D, Szigeti B, Krug von Nidda HA, White JS, Ukleev V, Rønnow HM, Tokunaga Y, Kikkawa A, Tokura Y, Taguchi Y, Kézsmárki I. Vital role of magnetocrystalline anisotropy in cubic chiral skyrmion hosts. NPJ Quantum Mater. 2021;6:65. https://doi.org/10.1038/s41535-021-00365-y.

  30. Okubo T, Chung S, Kawamura H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys Rev Lett. 2012;108(1): 017206. https://doi.org/10.1103/PhysRevLett.108.017206.

    Article  CAS  PubMed  Google Scholar 

  31. Mohylna M, Gómez Albarracín FA, Žukovič M, Rosales HD. Spontanous antiferromagnetic skyrmion/antiskyrmion lattice and spiral spin-liquid states in the frustrated triangular lattice. Phys Rev B. 2022;106(22):224406. https://doi.org/10.1103/PhysRevB.106.224406.

    Article  CAS  Google Scholar 

  32. Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P. Topological Hall effect in the A phase of MnSi. Phys Rev Lett. 2009;102(18):186602. https://doi.org/10.1103/PhysRevLett.102.186602.

    Article  CAS  PubMed  Google Scholar 

  33. Sui MX, Hu Y. Skyrmion-(non)crystal structure stabilized by dipolar interaction. Rare Met. 2022;41(9):3160. https://doi.org/10.1007/s12598-022-02040-y.

    Article  CAS  Google Scholar 

  34. Hu Y, Chi X, Li X, Liu Y, Du A. Creation and annihilation of skyrmions in the frustrated magnets with competing exchange interactions. Sci Rep. 2017;7:16079. https://doi.org/10.1038/s41598-017-16348-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Remya UD, Arun K, Swathi S, Athul SR, Dzubinska A, Reiffers M, Nagalakshmi R. Multiple magnetic transitions and magnetocaloric effect of Tb4CoIn alloy. J Rare Earths. 2023;41(11):1721. https://doi.org/10.1016/j.jre.2022.09.014.

    Article  CAS  Google Scholar 

  36. Soumyanarayanan A, Raju M, Gonzalez Oyarce AL, Tan AKC, Im MY, Petrović AP, Ho P, Khoo KH, Tran M, Gan CK, Ernult F, Panagopoulos C. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nature Mater. 2017;16:898. https://doi.org/10.1038/nmat4934.

    Article  CAS  Google Scholar 

  37. Cui BS, Yang YQ, Guo XB, Liang SH, Wu H, Yu GQ. Progress on elliptical magnetic skyrmions. Rare Met. 2023;42(2):359. https://doi.org/10.1007/s12598-022-02134-7.

    Article  CAS  Google Scholar 

  38. Kravchuk VP, Rößler UK, Volkov OM, Sheka DD, van den Brink J, Makarov D, Fuchs H, Fangohr H, Gaididei Y. Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions. Phys Rev B. 2016;94(14):144402. https://doi.org/10.1103/PhysRevB.94.144402.

    Article  CAS  Google Scholar 

  39. Pylypovskyi OV, Makarov D, Kravchuk VP, Gaididei Y, Saxena A, Sheka DD. Chiral skyrmion and skyrmionium states engineered by the gradient of curvature. Phys Rev Appl. 2018;10(6):064057. https://doi.org/10.1103/PhysRevApplied.10.064057.

    Article  CAS  Google Scholar 

  40. Carvalho-Santos VL, Corona RM, Altbir D, Castillo-Sepúlveda S. Shifts in the skyrmion stabilization due to curvature effects in dome- and antidome-shaped surfaces. Phys Rev B. 2020;102(2):024444. https://doi.org/10.1103/PhysRevB.102.024444.

    Article  CAS  Google Scholar 

  41. Dai YY, Wang H, Yang T, Adeyeye AO, Zhang ZD. Elongation of skyrmions by Dzyaloshinskii-Moriya interaction in helimagnetic films. Rare Met. 2022;41(9):3150. https://doi.org/10.1007/s12598-022-02023-z.

    Article  CAS  Google Scholar 

  42. Yershov KV, Kákay A, Kravchuk VP. Curvature-induced drift and deformation of magnetic skyrmions: comparison of the ferromagnetic and antiferromagnetic cases. Phys Rev B. 2022;105(5):054425. https://doi.org/10.1103/PhysRevB.105.054425.

    Article  CAS  Google Scholar 

  43. Yang J, Kim J, Abert C, Suess D, Kim SK. Stability of skyrmion formation and its abnormal dynamic modes in magnetic nanotubes. Phys Rev B. 2020;102(9):094439. https://doi.org/10.1103/PhysRevB.102.094439.

    Article  CAS  Google Scholar 

  44. Liu Y, Cai N, Yu X, Xuan S. Nucleation and stability of skyrmions in three-dimensional chiral nanostructures. Sci Rep. 2020;10:21717. https://doi.org/10.1038/s41598-020-78838-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Cai N, Xin MZ, Wang S. Magnetic skyrmions in curved geometries. Rare Met. 2022;41(7):2184. https://doi.org/10.1007/s12598-021-01916-9.

    Article  CAS  Google Scholar 

  46. Chi X, Du A, Hu Y. Skyrmion driven by rotary magnetic field on the surface of magnetic nanotube: a Monte Carlo study. Nanotechnology. 2021;32(27):275702. https://doi.org/10.1088/1361-6528/abf302.

    Article  CAS  Google Scholar 

  47. Konstantinova E. Theoretical simulations of magnetic nanotubes using Monte Carlo method. J Magn Magn Mater. 2008;320(21):2721. https://doi.org/10.1016/j.jmmm.2008.06.007.

    Article  CAS  Google Scholar 

  48. Kechrakos D, Tzannetou L, Patsopoulos A. Magnetic skyrmions in cylindrical ferromagnetic nanostructures with chiral interactions. Phys Rev B. 2020;102(5):054439. https://doi.org/10.1103/PhysRevB.102.054439.

    Article  CAS  Google Scholar 

  49. Simon E, Palotás K, Rózsa L, Udvardi L, Szunyogh L. Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir(111). Phys Rev B. 2014;90(9):094410. https://doi.org/10.1103/PhysRevB.90.094410.

    Article  CAS  Google Scholar 

  50. Utesov OI. Thermodynamically stable skyrmion lattice in a tetragonal frustrated antiferromagnet with dipolar interaction. Phys Rev B. 2021;103(6):064414. https://doi.org/10.1103/PhysRevB.103.064414.

    Article  CAS  Google Scholar 

  51. Nishikawa Y, Hukushima K, Krauth W. Solid-liquid transition of skyrmions in a two-dimensional chiral magnet. Phys Rev B. 2019;99(6):064435. https://doi.org/10.1103/PhysRevB.99.064435.

    Article  CAS  Google Scholar 

  52. Bernand-Mantel A, Muratov CB, Simon TM. Unraveling the role of dipolar versus Dzyaloshinskii-Moriya interactions in stabilizing compact magnetic skyrmions. Phys Rev B. 2020;101(4):045416. https://doi.org/10.1103/PhysRevB.101.045416.

    Article  CAS  Google Scholar 

  53. Shimokawa T, Okubo T, Kawamura H. Multiple-q states of the J1–J2 classical honeycomb-lattice Heisenberg antiferromagnet under a magnetic field. Phys Rev B. 2019;100(22):224404. https://doi.org/10.1103/PhysRevB.100.224404.

    Article  CAS  Google Scholar 

  54. Lu Q, Hu Y. Temperature dependence of dipole-induced exchange bias. Nanotechnology. 2020;31(30):305703. https://doi.org/10.1088/1361-6528/ab87c9.

    Article  CAS  PubMed  Google Scholar 

  55. Hu Y, Lu Q, Chi X, Zhang Z, Hu T, Li R, Yu L, Du A. Cooling-field dependence of dipole-induced loop bias. Nanotechnology. 2019;30(32):325701. https://doi.org/10.1088/1361-6528/ab1a57.

    Article  CAS  PubMed  Google Scholar 

  56. Sasaki M, Matsubara F. Stochastic cutoff method for long-range interacting systems. J Phys Soc Jpn. 2008;77(2):024004. https://doi.org/10.1143/jpsj.77.024004.

    Article  Google Scholar 

  57. Mohanta N, Okamoto S, Dagotto E. Planar topological Hall effect from conical spin spirals. Phys Rev B. 2020;102(6):064430. https://doi.org/10.1103/PhysRevB.102.064430.

    Article  CAS  Google Scholar 

  58. Livesey KL, Ruta S, Anderson NR, Baldomir D, Chantrell RW, Serantes D. Beyond the blocking model to fit nanoparticle ZFC/FC magnetisation curves. Sci Rep. 2018;8:11166. https://doi.org/10.1038/s41598-018-29501-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li R, Yu L, Hu Y. Spin-glass irreversibility temperature and magnetic stabilization in ferromagnet/spin-glass bilayers. Phys Status Solidi RRL. 2019;13(6):1900039. https://doi.org/10.1002/pssr.201900039.

    Article  CAS  Google Scholar 

  60. Komatsu H, Nonomura Y, Nishino M. Phase diagram of the two-dimensional dipolar Heisenberg model with Dzyaloshinskii-Moriya interaction and Ising anisotropy. Phys Rev B. 2021;103(21):214404. https://doi.org/10.1103/PhysRevB.103.214404.

    Article  CAS  Google Scholar 

  61. Chen G, Mascaraque A, N’Diaye AT, Schmid AK. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl Phys Lett. 2015;106(24):242404. https://doi.org/10.1063/1.4922726.

    Article  CAS  Google Scholar 

  62. Sui MX, Zhang ZB, Chi XD, Zhang JY, Hu Y. Dense skyrmion crystal stabilized through interfacial exchange coupling: role of in-plane anisotropy. Front Phys. 2021;16(2):23501. https://doi.org/10.1007/s11467-020-1000-6.

    Article  Google Scholar 

  63. Zhang ZB, Hu Y. Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer. Chin Phys B. 2021;30(7):077503. https://doi.org/10.1088/1674-1056/abf4bc.

    Article  CAS  Google Scholar 

  64. Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovács A, Zang J, Tian M, Zhang Y, Du H, Dunin-Borkowski RE. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys Rev Lett. 2017;119(19):197205. https://doi.org/10.1103/PhysRevLett.119.197205.

    Article  PubMed  Google Scholar 

  65. Lin SZ, Batista CD. Face centered cubic and hexagonal close packed skyrmion crystals in centrosymmetric magnets. Phys Rev Lett. 2018;102(7):077202. https://doi.org/10.1103/PhysRevLett.120.077202.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Program of National Natural Science Foundation of China-Regional Innovation and Development Joint Fund (No. U22A20117), the Natural Science Foundation of Liaoning Province (No. 2022-MS-108) and the Fundamental Research Funds for Central Universities (No. N2205015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 653 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XX., Zhang, CY., Xing, YX. et al. Controllable nucleation and deformation of skyrmions on surface of magnetic nanotubular monolayer. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02630-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02630-y

Keywords

Navigation