Skip to main content
Log in

A2B7-type La–Mg–Ni alloys prepared by Mg thermal diffusion for improved hydrogen storage performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A novel approach based on thermal diffusion was used to achieve controllable Mg content in A2B7-type La–Mg–Ni-based alloys. The formation mechanism of the A2B7-type phase as a result of the thermal diffusion process and the effect of Mg content on hydrogen storage performance were investigated. X-ray diffraction (XRD) patterns and Rietveld refinement results showed that increased Mg transformed the LaNi5 phase in the La0.74Sm0.03Y0.23Ni4.32Al0.04 precursor alloy into a superlattice structure. Scanning electron microscopy (SEM) images showed that Mg was evenly distributed in the alloy bulk. Mg in the superlattice significantly inhibited the phase decomposition of the superlattice structure during the hydrogen absorption/desorption cycles. An A2B7-type La0.57Sm0.02Y0.18Mg0.23Ni3.38Al0.03 alloy composed of Gd2Co7 and Ce2Ni7 phases was successfully synthesized. The pressure–composition isotherm profiles showed that the alloy had a hydrogen storage capacity as high as 1.73 wt%, with good cycling stability. After 50 cycles of hydrogen absorption/desorption, the alloy retained a hydrogen storage capacity of 1.45 wt%, with a capacity retention rate of up to 84.28%. The Mg thermal diffusion process thus provides a new approach for the controlled preparation of La–Mg–Ni-based alloys.

Graphical abstract

摘要

本文采用镁热扩散法成功实现了La–Mg–Ni系合金中的镁含量控制, 研究了镁热扩散过程中A2B7相的生成机制及镁含量对储氢性能的影响机制。X射线衍射图谱与全谱拟合结果显示, Mg热扩散过程中La0.74Sm0.03Y0.23Ni4.32Al0.04前驱物中的LaNi5相转变为超晶格结构, 扫描电子显微镜结果表明扩散至合金本体中的镁元素分布均匀。Mg进入到超晶格结构中有效抑制了吸放氢过程中超晶格结构的分解。通过镁热扩散法制备的La0.57Sm0.02Y0.18Mg0.23Ni3.38Al0.03合金由Gd2Co7相和Ce2Ni7相组成。压力-组成等温曲线测试结果显示合金储氢容量达到1.73wt%, 并且具有良好的循环稳定性。吸放氢循环50周后, 合金的储氢量仍可以达到1.45wt%, 容量保持率为84.28%。镁热扩散法为La–Mg–Ni 系合金的调控制备提供了一条有效途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang JX, Villeroy B, Knosp B, Bernard P, Latroche M. Structural and chemical analyses of the new ternary La5MgNi24 phase synthesized by spark plasma sintering and used as negative electrode material for Ni-MH batteries. Int J Hydr Energy. 2012;37(6):5225. https://doi.org/10.1016/j.ijhydene.2011.12.096.

    Article  CAS  Google Scholar 

  2. Yong H, Ji YQ, Hu JF, Zhao DL, Wang S. Absorption and desorption hydrogen kinetic of Mg–Y–Ni based hydrogen storage alloy. Chin J Rare Met. 2022;46(8):1021. https://doi.org/10.13373/j.cnki.cjrm.XY22030006.

    Article  Google Scholar 

  3. Zhang Q, Zhao B, Fang M, Liu C, Hu Q, Fang F, Sun D, Ouyang L, Zhu M. Nd1.5Mg0.5Ni7-based compounds: structural and hydrogen storage properties. Inorg Chem. 2012;51(5):2976. https://doi.org/10.1021/ic2022962.

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Chen X, Xu J, Zhu S, Cheng H, Yang G, Han X, Zhang L, Li Y, Han S. A new strategy for enhancing the cycling stability of superlattice hydrogen storage alloys. Chem Eng J. 2021;418: 129395. https://doi.org/10.1016/j.cej.2021.129395.

    Article  CAS  Google Scholar 

  5. Wei Lv, Zeng H, Chen XH, Xue ZY, Wu Y. An improvement of self-discharge properties of Ce2Ni7-type La0.65Ce0.1Mg0.25Ni3Co0.5 hydrogen storage alloy produced by the melt-spun processing. J Alloys Compd. 2021;876:160183. https://doi.org/10.1016/j.jallcom.2021.160183.

    Article  CAS  Google Scholar 

  6. Li Y, Liu Z, Zhang G, Zhang Y, Ren H. Novel A7B23-type La–Mg–Ni-Co compound for application on Ni-MH battery. J Power Sour. 2019;441:126667. https://doi.org/10.1016/j.jpowsour.2019.05.073.

    Article  CAS  Google Scholar 

  7. Chen ZL, Si TZ, Zhang QA. Hydrogen absorption-desorption cycle durability of SmMgNi4. J Alloy Compd. 2015;621:42. https://doi.org/10.1016/j.jallcom.2014.09.033.

    Article  CAS  Google Scholar 

  8. Jiang WQ, Chen YJ, Hu MR, Zeng CF, Liang C. Rare earth-Mg–Ni-based alloys with superlattice structure for electrochemical hydrogen storage. J Alloy Compd. 2021;887:161381. https://doi.org/10.1016/j.jallcom.2021.161381.

    Article  CAS  Google Scholar 

  9. Lin HJ, Lu YS, Zhang LT, Liu HZ, Edalati K, Revesz A. Recent advances in metastable alloys for hydrogen storage: a review. Rare Met. 2022;41(6):1797. https://doi.org/10.1007/s12598-021-01917-8.

    Article  CAS  Google Scholar 

  10. Giza K, Hackemer A, Drulis H. Influence of the synthesis route on hydrogen sorption properties of La2MgNi7Co2 alloy. Int J Hydr Energy. 2020;45:1492. https://doi.org/10.1016/j.ijhydene.2019.11.050.

    Article  CAS  Google Scholar 

  11. Li J, He X, Xiong W, Wang L, Li B, Li J, Zhou S, Yan H. Phase forming law and electrochemical properties of A2B7-type La–Y–Ni-based hydrogen storage alloys with different La/Y ratios. J Rare Earths. 2023;41(2):268. https://doi.org/10.1016/j.jre.2022.04.024.

    Article  CAS  Google Scholar 

  12. Lv W, Ying Wu. Effect of melt spinning on the structural and low temperature electrochemical characteristics of La–Mg–Ni based La0.65Ce0.1Mg0.25Ni3Co0.5 hydrogen storage alloy. J Alloys Compds. 2019;789:547. https://doi.org/10.1016/j.jallcom.2019.03.002.

    Article  CAS  Google Scholar 

  13. Young K, Ouchi T, Wang L, Wong DF. The effects of Al substitution on the phase abundance, structure and electrochemical performance of La0.7Mg0.3Ni2.8Co0.5−xAlx (x = 0, 0.1, 0.2) alloys. J Power Sour. 2015;279:172. https://doi.org/10.1016/j.jpowsour.2015.01.022.

    Article  CAS  Google Scholar 

  14. Iwase K, Ishida S, Mori K. Crystallographic hydride phase analysis and hydrogenation properties of Gd2Co7 with Ce2Ni7-and Er2Co7-type structures. Int J Hydr Energy. 2020;45:27413. https://doi.org/10.1016/j.ijhydene.2020.07.045.

    Article  CAS  Google Scholar 

  15. Zhang L, Jia Z, Wang W, Rodriguez-Perez IA, Zhao Y, Li Y, Zhao X, Wang L, Han S. A new choice for the anode of nickel metal hydride batteries with long cycling life: a Ce2Ni7-type single-phase Nd0.80Mg0.20Ni3.58 hydrogen storage alloy. J Power Sour. 2019;433:126687. https://doi.org/10.1016/j.jpowsour.2019.05.093.

    Article  CAS  Google Scholar 

  16. Zhang L, Ding Y, Li Y, Zhao Y, Zhao X, Liu B, Han S. Hydrogen absorption-desorption characteristics of a Gd2Co7-type Sm1.6Mg0.4Ni7 compound. J Mater Chem A. 2016;4(24):9419. https://doi.org/10.1039/C6TA02889F.

    Article  CAS  Google Scholar 

  17. Wang L, Zhang X, Zhou S, Xu J, Yan H, Luo Q, Li Q. Effect of Al content on the structural and electrochemical properties of A2B7 type La–Y–Ni based hydrogen storage alloy. Int J Hydr Energy. 2020;45(33):16677. https://doi.org/10.1016/j.ijhydene.2020.04.136.

    Article  CAS  Google Scholar 

  18. Guo Y, Shi Y, Yuan R, Leng H, Li Q. Inhibition mechanism of capacity degradation in Mg-substituted LaY2-xMgxNi9 hydrogen storage alloys. J Alloy Compd. 2021;873:159826. https://doi.org/10.1016/j.jallcom.2021.159826.

    Article  CAS  Google Scholar 

  19. Zhou H, Zhang S, Yao Q, Li W. The isothermal sections of the phase diagram of the Nd–Mg–Ni ternary system at 1123 and 673 K (Ni-rich part). J Alloy Compd. 2007;429(1–2):116. https://doi.org/10.1016/j.jallcom.2006.04.006.

    Article  CAS  Google Scholar 

  20. Yartys V, Denys R. Structure–properties relationship in RE3−xMgxNi9H10–13 (RE = La, Pr, Nd) hydrides for energy storage. J Alloy Compd. 2015;645:S412. https://doi.org/10.1016/j.jallcom.2014.12.091.

    Article  CAS  Google Scholar 

  21. Qin PF, Yang Q, He YY, Zhang JH, Xie JS, Hua XR, Guan K, Meng J. Microstructure and mechanical properties of high-strength high-pressure die-cast Mg-4Al-3La-1Ca-0.3Mn alloy. Rare Met. 2021;40(10):2956. https://doi.org/10.1007/s12598-020-01661-5.

    Article  CAS  Google Scholar 

  22. Gao ZJ, Zhang B, Luo YC, Li H. Correlation between phase structure and electrochemical properties of Ce2Ni7-type La-RE–Mg–Ni (RE = Nd, Sm, Y) alloys: a comparative study. J Taiwan Inst Chem Eng. 2018;89:183. https://doi.org/10.1016/j.jtice.2018.05.013.

    Article  CAS  Google Scholar 

  23. Zhang P, Liu Y, Zhu J, Wei X, Yu G. Effect of Al and W substitution for Ni on the microstructure and electrochemical properties of La1.3CaMg0.7Ni9-x(Al0.5W0.5)x hydrogen storage alloys. Int J Hydr Energy. 2007;32(13):2488. https://doi.org/10.1016/j.ijhydene.2006.11.006.

    Article  CAS  Google Scholar 

  24. Pan H, Ma S, Shen J, Tan J, Deng J, Gao M. Effect of the substitution of PR for LA on the microstructure and electrochemical properties of La0.7-xPrxMg0.3Ni2.45Co0.75Mn0.1Al0.2 (x = 0.0–0.3) hydrogen storage electrode alloys. Int J Hydr Energy. 2007;32(14):2949. https://doi.org/10.1016/j.ijhydene.2006.12.023.

    Article  CAS  Google Scholar 

  25. Fang F, Chen Z, Wu D, Liu H, Dong C, Song Y, Sun D. Subunit volume control mechanism for dehydrogenation performance of AB3-type superlattice intermetallics. J Power Sour. 2019;427:145. https://doi.org/10.1016/j.jpowsour.2019.04.072.

    Article  CAS  Google Scholar 

  26. Chen Y, Mo X, Huang Y, Hu C, Zuo X, Wei Q, Zhou R, Li X, Jiang W. The role of magnesium on properties of La3-xMgxNi9 (x = 0, 0.5, 1.0, 1.5, 2.0) hydrogen storage alloys from first-principles calculations. Int J Hydr Energy. 2022;47:36408. https://doi.org/10.1016/j.ijhydene.2022.08.242.

    Article  CAS  Google Scholar 

  27. Si TZ, Pang G, Zhang QA, Liu DM, Liu N. Solid solubility of Mg in Ca2Ni7 and hydrogen storage properties of (Ca2−xMgx)Ni7 alloys. Int J Hydrogen Energy. 2009;34(11):4833. https://doi.org/10.1016/j.ijhydene.2009.03.055.

    Article  CAS  Google Scholar 

  28. Xiong N, Tian Y, Yang B, Xu B, Liu D, Dai Y. Volatilization and condensation behaviours of Mg under vacuum. Vacuum. 2018;156:463. https://doi.org/10.1016/j.vacuum.2018.08.014.

    Article  CAS  Google Scholar 

  29. Zhao X, Ke D, Cai Y, Hu F, Liu J, Zhang L, Han S. A Novel Synthesis Method of La–Mg–Ni-based Superlattice by LaNi5 Absorbing Gas-state Mg. ChemistrySelect. 2019;4(27):8165. https://doi.org/10.1002/slct.201901191.

    Article  CAS  Google Scholar 

  30. Cao ZM, Zhou PP, Xiao XZ, Zhan LJ, Jiang ZF, Wang SM, Jiang LJ, Chen LX. Development of Ti0.85Zr0.17(Cr-Mn-V)1.3Fe0.7-based Laves phase alloys for thermal hydrogen compression at mild operating temperatures. Rare Met. 2022;41(8):2588. https://doi.org/10.1007/s12598-022-01962-x.

    Article  CAS  Google Scholar 

  31. Sato T, Mochizuki T, Ikeda K, Honda T, Otomo T, Sagayama H, Yang H, Luo W, Lombardo L, Züttel A, Takagi S, Kono T, Orimo S. Crystal structural investigations for understanding the hydrogen storage properties of YMgNi4-based alloys. ACS Omega. 2020;5(48):31192. https://doi.org/10.1021/acsomega.0c04535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Q, Chen Z, Li Y, Fang F, Sun D, Ouyang L, Zhu M. Comparative investigations on hydrogen absorption–desorption properties of Sm–Mg–Ni compounds: the effect of [SmNi5]/[SmMgNi4] unit ratio. J Phys Chem C. 2015;119(9):4719. https://doi.org/10.1021/acs.jpcc.5b00279.

    Article  CAS  Google Scholar 

  33. Sakaki K, Terashita N, Tsunokake S, Nakamura Y, Akiba E. Effect of rare earth elements and alloy composition on hydrogenation properties and crystal structures of hydrides in Mg2–xRExNi4. J Phys Chem C. 2012;116(36):19156. https://doi.org/10.1021/jp3052856.

    Article  CAS  Google Scholar 

  34. Matsuda J, Nakamura Y, Akiba E. Lattice defects introduced into LaNi5-based alloys during hydrogen absorption/desorption cycling. J Alloy Compd. 2011;509(27):7498. https://doi.org/10.1016/j.jallcom.2011.04.096.

    Article  CAS  Google Scholar 

  35. Yu H, Wu Y, Chen S, Xie Z, Wu Y, Cheng N, Yang X, Lin W, Xie L, Li X, Zheng J. Pd-modified LaNi5 nanoparticles for efficient hydrogen storage in a carbazole type liquid organic hydrogen carrier. Appl Catal B. 2022;317:121720. https://doi.org/10.1016/j.apcatb.2022.121720.

    Article  CAS  Google Scholar 

  36. Zhang L, Han S, Li Y, Liu J, Zhang J, Wang J, Yang S. Formation mechanism, phase structure and electrochemical properties of the La–Mg–Ni-based multiphase alloys by powder sintering LaNi5 and LaMgNi4. Int J Hydr Energy. 2013;38(25):10431. https://doi.org/10.1016/j.ijhydene.2013.05.129.

    Article  CAS  Google Scholar 

  37. Wang CC, Zhou YT, Yang CC, Jiang Q. Clarifying the capacity deterioration mechanism sheds light on the design of ultra-long-life hydrogen storage alloys. Chem Eng J. 2018;352:325. https://doi.org/10.1016/j.cej.2018.07.024.

    Article  CAS  Google Scholar 

  38. Liu JJ, Han SM, Li Y, Zhang J, Zhao Y, Che L. Effect of crystal transformation on electrochemical characteristics of La–Mg–Ni-based alloys with A2B7-type super-stacking structures. Int J Hydr Energy. 2013;38(34):14903. https://doi.org/10.1016/j.ijhydene.2013.09.049.

    Article  CAS  Google Scholar 

  39. Wang W, Zhang L, Rodríguez-Pérez ZY, Liu X, Zhang S, Ren K, Li Y, Han S. A novel AB4-type RE–Mg–Ni-Al-based hydrogen storage alloy with high power for nickel-metal hydride batteries. Electrochem Acta. 2019;317:211. https://doi.org/10.1016/j.electacta.2019.05.128.

    Article  CAS  Google Scholar 

  40. Young K, Huang B, Regmi RK, Lawes G, Liu Y. Comparisons of metallic clusters imbedded in the surface oxide of AB2, AB5, and A2B7 alloys. J Alloy Compd. 2010;506(2):831. https://doi.org/10.1016/j.jallcom.2010.07.086.

    Article  CAS  Google Scholar 

  41. Wu C, Zhang L, Liu J, Li Y, Yang S, Liu B, Han S. Electrochemical characteristics of La0.59Nd0.14Mg0.27Ni3.30 alloy with rhombohedral-type and hexagonal-type A2B7 phases. J Alloys Compd. 2017;693:573. https://doi.org/10.1016/j.jallcom.2016.09.206.

    Article  CAS  Google Scholar 

  42. Zhang L, Ding Y, Zhao Y, Du W, Li Y, Yang S, Han S. Phase structure and cycling stability of A2B7 superlattice La0.60Sm0.15Mg0.25Ni3.40 metal hydride alloy. Int J Hydr Energy. 2016;41(3):1791. https://doi.org/10.1016/j.ijhydene.2015.12.049.

    Article  CAS  Google Scholar 

  43. Liu Y, Yuan H, Guo M, Jiang L. Effect of Y element on cyclic stability of A2B7-type La–Y–Ni-based hydrogen storage alloy. Int J Hydr Energy. 2019;44(39):22064. https://doi.org/10.1016/j.ijhydene.2019.06.081.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2022YFB3803804), the National Natural Science Foundation of China (Nos. 51971197, 52071281 and 52201282), Basic Innovation Research Project in Yanshan University (No. 2022LGZD004), China Postdoctoral Science Foundation (2023M742945), Postdoctoral research project of Hebei Province (B2023003023) and Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance (No. 22567616H).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Li or Shu-Min Han.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YX., Wu, GJ., Gu, J. et al. A2B7-type La–Mg–Ni alloys prepared by Mg thermal diffusion for improved hydrogen storage performance. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02627-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02627-7

Keywords

Navigation