Skip to main content
Log in

Dynamically lithium-compensated polymer artificial SEI to assist highly stable lithium-rich manganese-based anode-free lithium metal batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to the unique structure, anode-free lithium metal batteries (AFLMBs) have higher energy density and lower production cost than traditional lithium metal batteries (LMBs) or lithium-ion batteries (LIBs). However, AFLMBs suffer from an inherently finite Li reservoir and exhibit poor cycle stability, low Coulombic efficiency (CE) and severe dendrite growth. In this work, polydiallyl lithium disulfide (PDS-Li) was successfully synthesized and coated on Cu current collector by electrochemical polymerization. The PDS-Li acts as an additional lithium resource to compensate for the irreversible loss of lithium during cycling. In addition, the special structure and lithiophilicity of PDS-Li contribute to lower nucleation overpotential and uniform lithium deposition. When coupled with Li-rich manganese-based (LRM) cathode of Li1.2Mn0.54Ni0.13Co0.13O2, the anode-free full cell exhibits significantly improved cycle stability over 100 cycles and capacity retention of 63.3% and 57% after 80 and 100 cycles, respectively. We believe that PDS-Li can be used to ensure stable cycling performance and high-energy–density in AFLMBs.

Graphic abstract

摘要

由于无负极锂金属电池独特的结构,无负极锂金属电池比传统的锂金属电池或锂离子电池具有更高的能量密度和更低的生产成本。然而,无负极锂金属电池受到固有的有限锂存储的影响,表现出差的循环稳定性,低的库仑效率和严重的枝晶生长。本文成功地合成了聚二烯丙基二硫化锂,并通过电化学聚合将其包覆在铜集流体上。聚二烯丙基二硫化锂中的锂作为额外的锂资源可以补偿循环过程中不可逆的锂损失。此外,聚二烯丙基二硫化锂的特殊结构和亲锂性有助于降低成核过电位和均匀的锂沉积。当与富锂锰基正极Li1.2Mn0.54Ni0.13Co0.13O2配对时,无负极锂金属全电池在100圈循环的循环稳定性显著提高,第80圈和100圈循环后的容量保持率分别为63.3%和57%。我们相信聚二烯丙基二硫化锂可以用于保证无负极锂金属电池稳定的循环性能和高能量密度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nat. 2001;414(6861):359. https://doi.org/10.1038/35104644.

    Article  CAS  Google Scholar 

  2. Lin DC, Liu YY, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotech. 2017;12(3):194. https://doi.org/10.1038/nnano.2017.16.

    Article  CAS  Google Scholar 

  3. Ren J, Ma ZS, Wang YD, Ou JR, Chen TQ, Zheng SY. Microcracks in nickel-rich layered cathodes: mechanism of generation and coping strategies. Chin J Rare Met. 2022;46(6):736. https://doi.org/10.13373/j.cnki.cjrm.XY22030009.

    Article  Google Scholar 

  4. Pu KC, Zhang X, Qu XL, Hu JJ, Li HW, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616. https://doi.org/10.1007/s12598-020-01432-2.

    Article  CAS  Google Scholar 

  5. Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energ Environ Sci. 2016;9(10):3221. https://doi.org/10.1039/C6EE01674J.

    Article  CAS  Google Scholar 

  6. Gao Y, Cui BF, Wang JJ, Sun ZY, Chen Q, Deng YD, Han XP, Hu WB. Improving Li reversibility in Li metal batteries through uniform dispersion of Ag nanoparticles on graphene. Rare Met. 2022;41(10):3391. https://doi.org/10.1007/s12598-022-02044-8.

    Article  CAS  Google Scholar 

  7. Wang D, Zhang W, Zheng WT, Cui XQ, Rojo T, Zhang Q. Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy. Adv Sci. 2017;4(1):1600168. https://doi.org/10.1002/advs.201600168.

    Article  CAS  Google Scholar 

  8. Yang QY, Yu Z, Li Y, Zhang W, Yuan HW, Li HJ, Ma W, Zhu SM, Li S. Understanding and modifications on lithium deposition in lithium metal batteries. Rare Met. 2022;41(8):2800. https://doi.org/10.1007/s12598-022-01994-3.

    Article  CAS  Google Scholar 

  9. Zhang JR, Lan ZW, Xi RH, Li YY, Wang JT, Zhang CH. Review on deficiency and modification of high nickel ternary materials for lithium-ion batteries. Chin J Rare Met. 2022;46(3):367–76. https://doi.org/10.13373/j.cnki.cjrm.XY20090004.

    Article  Google Scholar 

  10. Xiang JW, Zhang Y, Zhang B, Yuan LX, Liu XT, Cheng ZX, Yang Y, Zhang XX, Li Z, Shen Y, Jiang JJ, Huang YH. A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy Environ Sci. 2021;14(6):3510. https://doi.org/10.1039/D1EE00049G.

    Article  CAS  Google Scholar 

  11. Yang Y, Yao SY, Liang ZW, Wen YC, Liu ZB, Wu YW, Liu J, Zhu M. A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS Energy Lett. 2022;7(2):885. https://doi.org/10.1021/acsenergylett.1c02719.

    Article  CAS  Google Scholar 

  12. Chen JH, Li ZD, Sun NN, Xu JT, Li Q, Yao XY, Ming J, Peng Z. A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode. ACS Energy Lett. 2022;7(5):1594. https://doi.org/10.1021/acsenergylett.2c00395.

    Article  CAS  Google Scholar 

  13. Wu JH, Liu SF, Han FD, Yao XY, Wang CS. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater. 2021;33(6):2000751. https://doi.org/10.1002/adma.202000751.

    Article  CAS  Google Scholar 

  14. Nanda S, Gupta A, Manthiram A. Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv Energy Mater. 2021;11(2):2000804. https://doi.org/10.1002/aenm.202000804.

    Article  CAS  Google Scholar 

  15. Xie ZK, Wu ZJ, An XW, Yue XY, Wang JJ, Abudula A, Guan GQ. Anode-free rechargeable lithium metal batteries: progress and prospects. Energy Storage Mater. 2020;32:386. https://doi.org/10.1016/j.ensm.2020.07.004.

    Article  Google Scholar 

  16. Hagos TT, Thirumalraj B, Huang CJ, Abrha LH, Hagos TM, Berhe GB, Bezabh HK, Cherng J, Chiu SF, Su WN, Hwang BJ. Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS Appl Mater Inter. 2019;11(10):9955. https://doi.org/10.1021/acsami.8b21052.

    Article  CAS  Google Scholar 

  17. Weber R, Genovese M, Louli AJ, Hames S, Martin C, Hill IG, Dahn JR. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat Energy. 2019;4(8):683. https://doi.org/10.1038/s41560-019-0428-9.

    Article  CAS  Google Scholar 

  18. Zhang JG. Anode-less. Nat Energy. 2019;4(8):637. https://doi.org/10.1038/s41560-019-0449-4.

    Article  CAS  Google Scholar 

  19. Tian Y, An YL, Wei CL, Jiang HY, Xiong SL, Feng JK, Qian YT. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy. 2020;78:105344. https://doi.org/10.1016/j.nanoen.2020.105344.

    Article  CAS  Google Scholar 

  20. Li C, Zheng C, Cao F, Zhang YQ, Xia XH. The development trend of graphene derivatives. J Electron Mater. 2022;51:4107. https://doi.org/10.1007/s11664-022-09687-4.

    Article  CAS  Google Scholar 

  21. Huang WZ, Zhao CZ, Wu P, Yuan H, Feng WE, Liu ZY, Lu Y, Sun S, Fu ZH, Hu JK, Yang SJ, Huang JQ, Zhang Q. Anode-free solid-state lithium batteries: a review. Adv Energy Mater. 2022;12(26):2201044. https://doi.org/10.1002/aenm.202201044.

    Article  CAS  Google Scholar 

  22. Assegie AA, Cheng JH, Kuo LM, Su WN, Hwang BJ. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale. 2018;10(13):6125. https://doi.org/10.1039/C7NR09058G.

    Article  CAS  PubMed  Google Scholar 

  23. Assegie AA, Chung CC, Tsai MC, Su WN, Chen CW, Hwang BJ. Multilayer-graphene-stabilized lithium deposition for anode-free lithium-metal batteries. Nanoscale. 2019;11(6):2710. https://doi.org/10.1039/C8NR06980H.

    Article  CAS  PubMed  Google Scholar 

  24. Louli AJ, Eldesoky A, Weber R, Genovese M, Coon M, deGooyer J, Deng Z, White RT, Lee J, Rodgers T, Petibon R, Hy S, Cheng SJH, Dahn JR. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat Energy. 2020;5(9):693. https://doi.org/10.1038/s41560-020-0668-8.

    Article  CAS  Google Scholar 

  25. Qian JF, Adams BD, Zheng JM, Xu W, Henderson WA, Wang J, Bowden ME, Xu SC, Hu JZ, Zhang JG. Anode-free rechargeable lithium metal batteries. Adv Funct Mater. 2016;26(39):7094. https://doi.org/10.1002/adfm.201602353.

    Article  CAS  Google Scholar 

  26. Beyene TT, Jote BA, Wondimkun ZT, Olbassa BW, Huang CJ, Thirumalraj B, Wang CH, Su WN, Dai HJ, Hwang BJ. Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries. ACS Appl Mater Inter. 2019;11(35):31962. https://doi.org/10.1021/acsami.9b09551.

    Article  CAS  Google Scholar 

  27. Liang P, Sun H, Huang CL, Zhu GZ, Tai HC, Li JC, Wang FF, Wang Y, Huang CJ, Jiang SK, Lin MC, Li YY, Hwang BJ, Wang CA, Dai HJ. A nonflammable high-voltage 4.7 V anode-free lithium battery. Adv Mater. 2022;34(51):2207361. https://doi.org/10.1002/adma.202207361.

    Article  CAS  Google Scholar 

  28. Pande V, Viswanathan V. Computational screening of current collectors for enabling anode-free lithium metal batteries. ACS Energy Lett. 2019;4(12):2952. https://doi.org/10.1021/acsenergylett.9b02306.

    Article  CAS  Google Scholar 

  29. Zhang SS, Fan XL, Wang CS. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochim Acta. 2017;258:1201. https://doi.org/10.1016/j.electacta.2017.11.175.

    Article  CAS  Google Scholar 

  30. Lin L, Qin K, Zhang Q, Gu L, Suo L, Hu YS, Li H, Huang X, Chen L. Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries. Angew Chem Int Edit. 2021;60(15):8289. https://doi.org/10.1002/anie.202017063.

    Article  CAS  Google Scholar 

  31. Louli AJ, Genovese M, Weber R, Hames SG, Logan ER, Dahn JR. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J Electrochem Soc. 2019;166(8):A1291. https://doi.org/10.1149/2.0091908jes.

    Article  CAS  Google Scholar 

  32. Qiao Y, Yang HJ, Chang Z, Deng H, Li X, Zhou HS. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat Energy. 2021;6(6):653. https://doi.org/10.1038/s41560-021-00839-0.

    Article  CAS  Google Scholar 

  33. Han WW, Ardhi REA, Liu GC. Dual impact of superior SEI and separator wettability to inhibit lithium dendrite growth. Rare Met. 2022;41(2):353. https://doi.org/10.1007/s12598-021-01878-y.

    Article  CAS  Google Scholar 

  34. Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater. 2016;6(21):1600906. https://doi.org/10.1002/aenm.201600906.

    Article  CAS  Google Scholar 

  35. Assat G, Tarascon JM. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat Energy. 2018;3(5):373. https://doi.org/10.1038/s41560-018-0097-0.

    Article  CAS  Google Scholar 

  36. He W, Guo WB, Wu HL, Lin Q, Han X, Xie QS, Liu PF, Zheng HF, Wang LS, Yu XQ, Peng DL. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater. 2021;33(50):2005937. https://doi.org/10.1002/adma.202005937.

    Article  CAS  Google Scholar 

  37. Chen SR, Dai F, Gordin ML, Yu ZX, Gao Y, Song JX, Wang DH. Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium–sulfur batteries. Angew Chem Int Edit. 2016;55(13):4231. https://doi.org/10.1002/anie.201511830.

    Article  CAS  Google Scholar 

  38. Zhao J, Zhou GM, Yan K, Xie J, Li YZ, Liao L, Jin Y, Liu K, Hsu PC, Wang JY, Cheng HM, Cui Y. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotech. 2017;12(10):993. https://doi.org/10.1038/nnano.2017.129.

    Article  CAS  Google Scholar 

  39. Yan K, Lu ZD, Lee HW, Xiong F, Hsu PC, Li YZ, Zhao J, Chu S, Cui Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016;1(3):16010. https://doi.org/10.1038/nenergy.2016.10.

    Article  CAS  Google Scholar 

  40. Jiang ZP, Zeng ZQ, Yang CK, Han ZL, Hu W, Lu J, Xie J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019;19(12):8780. https://doi.org/10.1021/acs.nanolett.9b03562.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Q, Tu Z, Wei S, Zhang K, Choudhury S, Liu X, Archer LA. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angew Chem Int Edit. 2018;57(4):992. https://doi.org/10.1002/ange.201711598.

    Article  CAS  Google Scholar 

  42. Brissot C, Rosso M, Chazalviel JN, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources. 1999;81–82:925. https://doi.org/10.1016/S0378-7753(98)00242-0.

    Article  Google Scholar 

  43. Li T, Xia XY, Liu J, Liu ZX, Hu S, Zhang LF, Zheng YW, Wang ZK, Chen HL, Peng MJ, Qian T, Yan CL. Suppressing surface lattice oxygen evolution by fluorinated graphene-scaffolded lithium-rich manganese-based cathode for enhanced stability. Energy Storage Mater. 2022;49:555. https://doi.org/10.1016/j.ensm.2022.05.002.

    Article  Google Scholar 

  44. Lu ZH, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J Electrochem Soc. 2002;149(6):A778. https://doi.org/10.1149/1.1471541.

    Article  CAS  Google Scholar 

  45. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang SH, Thackeray MM, Bruce PG. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc. 2006;128(26):8694. https://doi.org/10.1021/ja062027+.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundations of China (Nos. 52071226, 51872193 and U21A20332), the Natural Science Foundations of Jiangsu Province (Nos. BK20181168, BK20201171 and BK20220061), the Key R&D Project funded by Department of Science and Technology of Jiangsu Province (No. BE2020003-3), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 19KJA210004) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Liu or Cheng-Lin Yan.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6059 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, MJ., Zhou, JQ., Han, TT. et al. Dynamically lithium-compensated polymer artificial SEI to assist highly stable lithium-rich manganese-based anode-free lithium metal batteries. Rare Met. 43, 2527–2535 (2024). https://doi.org/10.1007/s12598-023-02609-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02609-1

Keywords

Navigation