Skip to main content
Log in

Weatherability and heat resistance enhanced by interaction between AG25 and Mg/Al-LDH

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Although inorganic pigments in common spectral tuning materials show good weatherability and heat resistance, the limited color choices, weak coloring power, poor dispersibility, and a possibility of toxicity limit their development. On the basis of organic pigments which possess a wide range of colors, high coloring power, good transparency, and high safety, herein, the modified pigment and biomimetic coating with improved weatherability, especially ultraviolet (UV) resistance (from 2 to 6 days), was achieved by intercalating acid green 25 (AG25) pigment into Mg/Al-layered double hydroxides (Mg/Al-LDH). Furthermore, the heat resistance of AG25 was also significantly increased. Moreover, the spectral stability of pigments after heat treatment is superior with almost unchanged spectral profile and green reflection peak. The formation of strong N–H bonds and the S–M (Mg, Al) bonds between Mg/Al-LDH laminates and AG25 molecules contributes to the improvement. This work shows potential for biomimetic leaf materials in respect of reflective spectra stability.

Graphical Abstract

摘要

尽管一般的光谱调控材料中的无机颜料表现出良好的耐候性和耐热性,但其颜色选择有限、着色能力弱、分散性差以及可能存在毒性等性质限制了其发展。在有机颜料具有广泛的颜色选择范围、高着色能力、好的透明度和高安全性的基础上,通过将酸性绿25(AG25)颜料插层进入Mg/Al水滑石(Mg/Al-LDH)中,获得了具有改善的耐候性,特别是抗紫外老化能力(从2天到6天)的改性颜料和仿生涂层。此外,AG25的耐热性也显著提高。另外,热处理后的颜料的光谱稳定性优异,光谱轮廓和绿色反射峰几乎不变。Mg/Al-LDH层板和AG25分子之间形成强的N-H键和S-M(Mg,Al)键有助于提高性能。这项工作对仿生叶片材料在提高反射光谱稳定性方面展现出广阔的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao LY, Fei XN, Zhao HB. Environmental substitution for PbCrO4 pigment with inorganic-organic hybrid pigment. Dyes Pigment. 2017;142:100. https://doi.org/10.1016/j.dyepig.2017.03.024.

    Article  CAS  Google Scholar 

  2. Gao Y, Ye H. Bionic membrane simulating solar spectrum reflection characteristics of natural leaf. Int J Heat Mass Transf. 2017;114:115. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.051.

    Article  CAS  Google Scholar 

  3. Kim J, Park C, Hahn JW. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Adv Opt Mater. 2022;10(6):2101930. https://doi.org/10.1002/adom.202101930.

    Article  CAS  Google Scholar 

  4. Xu C, Liu Y, Fang G, Zhu CH, Qian Q, Li C, Zhu RP, Xu GY, Yan JH, Zhang Y. Design, preparation and performance evaluation of core unit in multispectral camouflage coating. Infrared Phys Technol. 2022;121:104013. https://doi.org/10.1016/j.infrared.2021.104013.

    Article  CAS  Google Scholar 

  5. Xu K, Ye H. Preparation and optimization of biomimetic materials simulating solar spectrum reflection characteristics of natural leaves. J Mater Sci. 2020;55(27):12848. https://doi.org/10.1007/s10853-020-04942-7.

    Article  CAS  Google Scholar 

  6. He YQ, Zhang JW, Cai Y, Yi LM. Encapsulation of organic pigment via a facile dispersion approach and soap-free miniemulsion polymerization. Prog Org Coat. 2021;159:106403. https://doi.org/10.1016/j.porgcoat.2021.106403.

    Article  CAS  Google Scholar 

  7. Mahmoodi A, Ebrahimi M, Khosravi A, Eivaz MH. A hybrid dye-clay nano-pigment: synthesis, characterization and application in organic coatings. Dyes Pigments. 2017;147:234. https://doi.org/10.1016/j.dyepig.2017.08.009.

    Article  CAS  Google Scholar 

  8. Song CY, Liu Y, Wang YC, Tang SH, Li WK, Li Q, Zeng J, Chen L, Peng HC, Lei YP. Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Sci China Mater. 2021;64(7):1662. https://doi.org/10.1007/s40843-020-1566-6.

    Article  CAS  Google Scholar 

  9. Gao R, Yan DP, Duan X. Layered double hydroxides-based smart luminescent materials and the tuning of their excited states. Cell Rep Phys Sci. 2021;2(8):100536. https://doi.org/10.1016/j.xcrp.2021.100536.

    Article  CAS  Google Scholar 

  10. Dong L, Chang GR, Feng Y, Yao XZ, Yu XY. Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis. Rare Met. 2022;41(5):1583. https://doi.org/10.1007/s12598-021-01881-3.

    Article  CAS  Google Scholar 

  11. Zhou AQ, Yang JM, Zhu XW, Zhu XL, Liu JY, Zhong K, Chen HX, Chu JY, Du YS, Song YH, Qian JC, Li HM, Xu H. Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Met. 2022;41(6):2118. https://doi.org/10.1007/s12598-022-01960-z.

    Article  CAS  Google Scholar 

  12. Zhao J, Zhou G, Guo Y, Shen Z, Luo G, Wu Q, Yang LJ, Wang XZ, Hu Z. Balancing loading mass and gravimetric capacitance of NiCo-layered double hydroxides to achieve ultrahigh areal performance for flexible supercapacitors. Adv Powder Mater. 2023. https://doi.org/10.1016/j.apmate.2023.100151.

    Article  Google Scholar 

  13. Wang QC, Lei YP, Wang YC, Liu Y, Song CY, Zeng J, Song YH, Duan XD, Wang DS, Li YD. Atomic-scale engineering of chemical vapor deposition grown 2D transition metal dichalcogenides for electrocatalysis. Energ Environ Sci. 2020;13(6):1593. https://doi.org/10.1039/d0ee00450b.

    Article  CAS  Google Scholar 

  14. Kwon D, Kang JY, An S, Yang I, Jung JC. Tuning the base properties of Mg-Al hydrotalcite catalysts using their memory effect. J Energy Chem. 2020;46:229. https://doi.org/10.1016/j.jechem.2019.11.013.

    Article  Google Scholar 

  15. Qing XL, Yuan L, Wang YQ, Zhang ZT, Bi M, Weng XL. Synergistic influence of Cr3+ and CrO42- on the visible near-infrared spectrum of Mg-Al layered double hydroxides for efficient visible-light photocatalysis. J Alloy Compd. 2021;872:159628. https://doi.org/10.1016/j.jallcom.2021.159628.

    Article  CAS  Google Scholar 

  16. Li Y, Wu S, Dai Y, Pang L, Liu Q, Xie J, Kong D. Investigation of sodium stearate organically modified LDHs effect on the anti-aging properties of asphalt binder. Constr Build Mater. 2018;172:509. https://doi.org/10.1016/j.conbuildmat.2018.03.181.

    Article  CAS  Google Scholar 

  17. Zhao JQ, Shi R, Waterhouse GIN, Zhang TR. Selective photothermal CO2 reduction to CO, CH4, alkanes, alkenes over bimetallic alloy catalysts derived from layered double hydroxide nanosheets. Nano Energy. 2022;102:107650. https://doi.org/10.1016/j.nanoen.2022.107650.

    Article  CAS  Google Scholar 

  18. Yuan L, Wang C, Qing XL, Bi M, Huang G, Weng XL. Synthesis and fine spectroscopy tuning of the hyperspectral simulation material based on organic anions intercalated Mg-Al layered double hydroxide. Infrared Phys Techn. 2020;107:103328. https://doi.org/10.1016/j.infrared.2020.103328.

    Article  CAS  Google Scholar 

  19. Chen TW, Tang PG, Feng YJ, Li DQ. Facile color tuning, characterization, and application of acid Green25 and acid Yellow25 co-intercalated layered double hydroxides. Ind Eng Chem Res. 2017;56(19):5496. https://doi.org/10.1021/acs.iecr.7b00279.

    Article  CAS  Google Scholar 

  20. Wu L, Ding XX, Zhao XF, Liu YH, Hao XL, Tang AT, Zhang G, Pan FS. Morphology, structure and corrosion resistance of Mg-Al LDH films fabricated in different Al3+ concentration solutions. Rare Met. 2023;42(2):697. https://doi.org/10.1007/s12598-018-1191-y.

    Article  CAS  Google Scholar 

  21. Mahmoodi NM, Taghizadeh M, Taghizadeh A. Activated carbon/metal-organic framework composite as a bio-based novel green adsorbent: preparation and mathematical pollutant removal modeling. J Mol Liq. 2019;277:310. https://doi.org/10.1016/j.molliq.2018.12.050.

    Article  CAS  Google Scholar 

  22. Inthapanya X, Wu SH, Han ZF, Zeng GM, Wu MJ, Yang CP. Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics. Environ Sci Pollut Res. 2019;26:5944. https://doi.org/10.1007/s11356-018-3980-0.

    Article  CAS  Google Scholar 

  23. Jia XD, Zhang X, Zhao JQ, Zhao YF, Zhao YX, Waterhouse GIN, Shi R, Wu LZ, Tung CH, Zhang TR. Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. J Energy Chem. 2018;34:57. https://doi.org/10.1016/j.jechem.2018.09.011.

    Article  Google Scholar 

  24. Wang YC, Xu L, Zhan LS, Yang PY, Tang SH, Liu MJ, Zhao X, Xiong Y, Chen ZY, Lei YP. Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries. Nano Energy. 2022;92:106780. https://doi.org/10.1016/j.nanoen.2021.106780.

    Article  CAS  Google Scholar 

  25. Zhang X, Zhao YF, Zhao YX, Shi R, Waterhouse GIN, Zhang TR. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater. 2019;9(24):1900881. https://doi.org/10.1002/aenm.201900881.

    Article  CAS  Google Scholar 

  26. Li ZH, Liu JJ, Zhao YF, Shi R, Waterhouse GIN, Wang YS, Wu LZ, Tung CH, Zhang TR. Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy. 2019;60:467. https://doi.org/10.1016/j.nanoen.2019.03.069.

    Article  CAS  Google Scholar 

  27. Zhou L, Zhang C, Zhang YQ, Li ZH, Shao MF. Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. Adv Funct Mater. 2021;31(15):2009743. https://doi.org/10.1002/adfm.202009743.

    Article  CAS  Google Scholar 

  28. Zhou DJ, Jia Y, Duan XX, Tang JL, Xu J, Liu D, Xiong XY, Zhang JM, Luo J, Zheng LR, Liu B, Kuang Y, Sun XM, Duan X. Breaking the symmetry: gradient in NiFe layered double hydroxide nanoarrays for efficient oxygen evolution. Nano Energy. 2019;60:661. https://doi.org/10.1016/j.nanoen.2019.04.014.

    Article  CAS  Google Scholar 

  29. Liu MJ, Wang YC, Yu TT, Zhan LS, Zhao X, Lian C, Xiong Y, Xiong X, Lei YP. One-step synthesized Bi5O7I for extremely low-temperature CO2 electroreduction. Sci Bull. 2023;68(12):1238. https://doi.org/10.1016/j.scib.2023.05.016.

    Article  CAS  Google Scholar 

  30. Guo D, Yang SY, Jin CR, He SY. Dynamic mechanical properties of AlSi/hBN abradable seal coating. Rare Met. 2021;45(12):1448. https://doi.org/10.13373/j.cnki.cjrm.XY20120033.

    Article  Google Scholar 

  31. Lian Y, Fang TF, Zhang YH, Bing L, Li JL. Hydrogenation of CO2 to alcohol species over Co@Co3O4/C-N catalysts. J Catal. 2019;379:46. https://doi.org/10.1016/j.jcat.2019.09.018.

    Article  CAS  Google Scholar 

  32. Du XZ, Wang SY, Wei MR, Zhang JR, Ge GY, Hua WJ. A theoretical library of N1s core binding energies of polynitrogen molecules and ions in the gas phase. Phys Chem Chem Phys. 2022;24:8196. https://doi.org/10.1039/d2cp00069e.

    Article  CAS  PubMed  Google Scholar 

  33. Macchione MA, Mendoza-Cruz R, Bazan-Diaz L, Velazquez-Salazar JJ, Santiago U, Arellano-Jimenez MJ, Perez JF, Jose-Yacaman M, Samaniego-Benitez JE. Electron microscopy study of the carbon-induced 2H–3R-1T phase transition of MoS2. New J Chem. 2020;44:1190. https://doi.org/10.1039/c9nj03850g.

    Article  CAS  Google Scholar 

  34. Tan L, Xu SM, Wang ZL, Xu YQ, Wang X, Hao XJ, Bai S, Ning CJ, Wang Y, Zhang WK, Jo YK, Hwang SJ, Cao XZ, Zheng XS, Yan H, Zhao YF, Duan HH, Song YF. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew Chem Int Edit. 2019;58(34):11860. https://doi.org/10.1002/anie.201904246.

    Article  CAS  Google Scholar 

  35. Wei SX, Qiu HY, Shi HH, Lu W, Liu H, Yan HZ, Zhang DC, Zhang JW, Theato P, Wei Y, Chen T. Promotion of color-changing luminescent hydrogels from thermo to electrical responsiveness toward biomimetic skin applications. ACS Nano. 2021;15(6):10415. https://doi.org/10.1021/acsnano.1c02720.

    Article  CAS  PubMed  Google Scholar 

  36. Xie QX, Zhou DJ, Li PS, Cai Z, Xie TH, Gao TF, Chen RD, Kuang Y, Sun XM. Enhancing oxygen evolution reaction by cationic surfactants. Nano Res. 2019;12:2302. https://doi.org/10.1007/s12274-019-2410-z.

    Article  CAS  Google Scholar 

  37. Chatterjee A, Bharadiya P, Hansora D. Layered double hydroxide based bionanocomposites. Appl Clay Sci. 2019;177:19. https://doi.org/10.1016/j.clay.2019.04.022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the External Collaboration Fund (No. XM2022FH5079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Zhang, Zhi-Ming Liu or Yong-Peng Lei.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1497 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, PY., Liu, XC., Wang, YC. et al. Weatherability and heat resistance enhanced by interaction between AG25 and Mg/Al-LDH. Rare Met. 43, 2758–2768 (2024). https://doi.org/10.1007/s12598-023-02605-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02605-5

Keywords

Navigation