Skip to main content
Log in

Carbon cathode with heteroatom doping and ultrahigh surface area enabling enhanced capacitive behavior for potassium-ion hybrid capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Potassium-ion hybrid capacitors (PIHCs) are widely regarded as highly promising energy storage devices, due to their exceptional energy density, impressive power density, and abundant potassium resources. Unfortunately, restricted by the inherent capacitive storage mechanism, the carbon cathodes possess a much lower specific capacity than battery-type anodes. Therefore, designing high-performance carbon cathodes is extremely urgent for the development of PIHCs. Herein, N, O co-doped porous carbon (NOPC) was fabricated through the NaCl hard template method and combined KOH/melamine chemical activation technique, displaying the characteristics of abundant N/O content (4.7 at%/16.9 at%), ultrahigh specific surface area (3092 m2·g?1) and hierarchical pore network. The designed NOPC cathode delivers a high specific capacity (164.4 mAh·g?1 at 0.05 A·g?1) and superior cyclability (95.1% retention ratio at 2 A·g?1 over 2500 cycles). Notably, the adjustable ratio of micropores to mesopores facilitates the achievement of the optimal balance between capacity and rate capability. Moreover, the pseudocapacitance can be further augmented through the incorporation of N/O functional groups. As expected, the graphite//NOPC based PIHC possesses a high energy density of 113 Wh·kg?1 at 747 W·kg?1 and excellent capacity retention of 84.4% after 4000 cycles at 1.0 A·g?1. This work introduces a novel strategy for designing carbon cathodes that enhances the electrochemical performance of PIHCs.

Graphical Abstract

摘要

钾离子混合电容器因其优异的能量密度、令人印象深刻的功率密度和丰富的钾资源而被广泛认为是非常有前途的储能器件。不幸的是,受固有电容存储机制的限制,碳正极比电池型负极具有低得多的比容量。因此,设计高性能的碳正极对PIHCs的发展迫在眉睫。本文通过NaCl硬模板法和KOH/三聚氰胺化学活化技术制备了N,O共掺杂多孔碳(NOPC),具有丰富的N/O含量(4.7 at%/16.9 at%),超高的比表面积(3092 m2·g−1)和多级孔隙网络特征。设计的NOPC正极具有高比容量(0.05 A·g−1时为164.4 mAh·g−1)和出色的循环性能(2500次循环后2 A·g−1时的保持率为95.1%)。值得注意的是,微孔与介孔的可调比例有助于实现容量和倍率性能之间的最佳平衡。此外,赝电容可以通过引入N/O官能团而进一步增加。正如所料,基于石墨//NOPC的PIHC在747 W·kg−1下具有113 Wh·kg−1的高能量密度,并且在1.0 A·g−1下经过4000次循环后具有84.4%的优异容量保持率。这项工作介绍了一种新的策略来设计碳正极,以提高PIHCs的电化学性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eftekhari A, Jian ZL, Ji XL. Potassium secondary batteries. ACS Appl Mater Interfaces. 2017;9(5):4404. https://doi.org/10.1021/acsami.6b07989.

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Sun YJ, Tong Y, Li HY. Unique spindle-like bismuth-based composite toward ultrafast potassium storage. Small. 2022;18(44):2204045. https://doi.org/10.1002/smll.202204045.

    Article  CAS  Google Scholar 

  3. Ye K, Zhou ZW, Shao JQ, Lin L, Gao DF, Ta N, Si R, Wang GX, Bao XH. In situ reconstruction of a hierarchical Sn?Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew Chem Int Ed. 2020;59(12):4814. https://doi.org/10.1002/anie.201916538.

    Article  CAS  Google Scholar 

  4. Wei CH, Guo SG, Ma W, Mei SX, Xiang B, Gao B. Recent progress of bismuth-based electrode materials for advanced sodium ion batteries anode. Chin J Rare Met. 2021;45(5):611. https://doi.org/10.13373/j.cnki.cjrm.XY20070021.

    Google Scholar 

  5. Nie P, Liu XY, Fu RR, Wu YT, Jiang JM, Dou H, Zhang XG. Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries. ACS Energy Lett. 2017;2(6):1279. https://doi.org/10.1021/acsenergylett.7b00286.

    Article  CAS  Google Scholar 

  6. Gu M, Li Y, Li XL, Hu SY, Zhang XW, Xu W, Thevuthasan S, Baer DR, Zhang JG, Liu J, Wang CM. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano. 2012;6(9):8439. https://doi.org/10.1021/nn303312m.

    Article  CAS  PubMed  Google Scholar 

  7. Jiang JM, Nie P, Ding B, Wu WX, Chang Z, Wu YT, Dou H, Zhang XG. Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2016;8(45):30926. https://doi.org/10.1021/acsami.6b10038.

    Article  CAS  PubMed  Google Scholar 

  8. McDowell MT, Lee SW, Harris JT, Korgel BA, Wang CM, Nix WD, Cui Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013;13(2):758. https://doi.org/10.1021/nl3044508.

    Article  CAS  PubMed  Google Scholar 

  9. Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev. 2014;114(23):11619. https://doi.org/10.1021/cr5000915.

    Article  CAS  PubMed  Google Scholar 

  10. Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev. 2015;44(7):1777. https://doi.org/10.1039/c4cs00266k.

    Article  CAS  PubMed  Google Scholar 

  11. Li HS, Zhu Y, Dong SY, Shen LF, Chen ZJ, Zhang XG, Yu GH. Self-assembled Nb2O5 nanosheets for high energy?high power sodium ion capacitors. Chem Mater. 2016;28(16):5753. https://doi.org/10.1021/acs.chemmater.6b01988.

    Article  CAS  Google Scholar 

  12. Sivakkumar SR, Pandolfo AG. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim Acta. 2012;65:280. https://doi.org/10.1016/j.electacta.2012.01.076.

    Article  CAS  Google Scholar 

  13. Li HX, Lang JW, Lei SL, Chen JT, Wang KJ, Liu LY, Zhang TY, Liu WS, Yan XB. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv Funct Mater. 2018;28(30):1800757. https://doi.org/10.1002/adfm.201800757.

    Article  CAS  Google Scholar 

  14. Wang XH, Wang HL. Designing carbon anodes for advanced potassium-ion batteries: materials, modifications, and mechanisms. Adv Powder Mater. 2022;1(4):100057. https://doi.org/10.1016/j.apmate.2022.100057.

    Article  Google Scholar 

  15. Fang SJ, Du P, Zhang JF, Wang CH, Xiao ZM, Zhang B, Cao L, Fan XM, Ou X. Quasi-two-dimensional bismuth oxychalcogenide nanoflakes as novel anode for potassium-ion batteries. Rare Met. 2022;41(8):2567. https://doi.org/10.1007/s12598-022-01970-x.

    Article  CAS  Google Scholar 

  16. Wang F, Liu Y, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren FZ, Volinsky AA. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  Google Scholar 

  17. Liu C, Xiao N, Li HJ, Dong Q, Wang YW, Li HQ, Wang SF, Zhang XY, Qiu JS. Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem Eng J. 2020;382:121759. https://doi.org/10.1016/j.cej.2019.05.120.

    Article  CAS  Google Scholar 

  18. Wang GY, Wang XH, Sun JF, Zhang YM, Hou LR, Yuan CZ. Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors. Rare Met. 2022;41(11):3706. https://doi.org/10.1007/s12598-022-02067-1.

    Article  CAS  Google Scholar 

  19. Wu YJ, Sun YJ, Tong Y, Liu X, Zheng JF, Han DX, Li HY, Niu L. Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy Storage Mater. 2021;41:108. https://doi.org/10.1016/j.ensm.2021.05.045.

    Article  Google Scholar 

  20. Yi YY, Zeng ZH, Lian XY, Dou SX, Sun JY. Homologous nitrogen-doped hierarchical carbon architectures enabling compatible anode and cathode for potassium-ion hybrid capacitors. Small. 2022;18(13):2107139. https://doi.org/10.1002/smll.202107139.

    Article  CAS  Google Scholar 

  21. Bin DS, Zheng ZL, Cao AM, Wan LJ. Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications. Sci China Chem. 2022;66(1):65. https://doi.org/10.1007/s11426-022-1398-5.

    Article  CAS  Google Scholar 

  22. Chen XL, Xie M, Zheng ZL, Luo X, Jin HC, Chen YF, Yang GZ, Bin DS, Li D. Multiple accessible redox-active sites in a robust covalent organic framework for high-performance potassium storage. J Am Chem Soc. 2023;145(9):5105. https://doi.org/10.1021/jacs.2c11264.

    Article  CAS  PubMed  Google Scholar 

  23. Yang GZ, Chen YF, Feng BQ, Ye CX, Ye XB, Jin HC, Zhou E, Zeng X, Zheng ZL, Chen XL, Bin DS, Cao AM. Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ Sci. 2023;16(4):1540. https://doi.org/10.1039/d3ee00073g.

    Article  CAS  Google Scholar 

  24. Fan L, Lin KR, Wang J, Ma RF, Lu BG. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv Mater. 2018;30(20):1800804. https://doi.org/10.1002/adma.201800804.

    Article  CAS  Google Scholar 

  25. Liang HY, Zhang YC, Hao SJ, Cao LH, Li YH, Li Q, Chen D, Wang X, Guo XX, Li HS. Fast potassium storage in porous CoV2O6 nanosphere@graphene oxide towards high-performance potassium-ion capacitors. Energy Storage Mater. 2021;40:250. https://doi.org/10.1016/j.ensm.2021.05.013.

    Article  Google Scholar 

  26. Lin WC, Yang YC, Tuan HY. Ternary chalcogenide anodes for high-performance potassium-ion batteries and hybrid capacitors via composition-mediated bond softening and intermediate phase. Energy Storage Mater. 2022;51:38. https://doi.org/10.1016/j.ensm.2022.06.010.

    Article  Google Scholar 

  27. Ruan JF, Mo FJ, Chen ZL, Liu M, Zheng SY, Wu RB, Fang F, Song Y, Sun DL. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv Energy Mater. 2020;10(15):1904045. https://doi.org/10.1002/aenm.201904045.

    Article  CAS  Google Scholar 

  28. Tong Y, Wu YJ, Liu ZH, Yin YS, Sun YJ, Li HY. Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin Chem Lett. 2023;34(1):107443. https://doi.org/10.1016/j.cclet.2022.04.041.

    Article  CAS  Google Scholar 

  29. Liu TY, Lee B, Lee MJ, Park J, Chen ZM, Noda S, Lee SW. Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors. J Mater Chem A. 2018;6(8):3367. https://doi.org/10.1039/c7ta10881h.

    Article  CAS  Google Scholar 

  30. Yu X, Shao MJ, Yang XM, Li CX, Li T, Li DY, Wang RT, Yin LW. A high-performance potassium-ion capacitor based on a porous carbon cathode originated from the aldol reaction product. Chin Chem Lett. 2020;31(9):2215. https://doi.org/10.1016/j.cclet.2019.11.012.

    Article  CAS  Google Scholar 

  31. Kierzek K, Gryglewicz G. Activated carbons and their evaluation in electric double layer capacitors. Molecules. 2020;25(18):4255. https://doi.org/10.3390/molecules25184255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun JP, Li GC, Wang ZX, Guo HJ, Li XH, Yan GC, Wang JX. Balancing the anions adsorption and intercalation in carbon cathode enables high energy density dual-carbon lithium-ion capacitors. Carbon. 2022;200:28. https://doi.org/10.1016/j.carbon.2022.08.046.

    Article  CAS  Google Scholar 

  33. Kado Y, Soneda Y, Hatori H, Kodama M. Advanced carbon electrode for electrochemical capacitors. J Solid State Electrochem. 2019;23(4):1061. https://doi.org/10.1007/s10008-019-04211-x.

    Article  CAS  Google Scholar 

  34. Qian Y, Wu B, Li Y, Pan Z, Tian J, Lin N, Qian YT. Pressure-dependent self-template pyrolysis modulates the porosity and surface chemical configuration of carbon for potassium ion hybrid capacitors. Chem Eng J. 2023;451:138579. https://doi.org/10.1016/j.cej.2022.138579.

    Article  CAS  Google Scholar 

  35. Zou KY, Cai P, Wang BW, Liu C, Li JY, Qiu TY, Zou GQ, Hou HS, Ji XB. Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 2020;12(1):121. https://doi.org/10.1007/s40820-020-00458-6.

    Article  CAS  Google Scholar 

  36. Ghosh S, Barg S, Jeong SM, Ostrikov K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater. 2020;10(32):2001239. https://doi.org/10.1002/aenm.202001239.

    Article  CAS  Google Scholar 

  37. Gao JY, Wang GR, Wang WT, Yu L, Peng B, El-Harairy A, Li J, Zhang GQ. Engineering electronic transfer dynamics and ion adsorption capability in dual-doped carbon for high-energy potassium ion hybrid capacitors. ACS Nano. 2022;16(4):6255. https://doi.org/10.1021/acsnano.2c00140.

    Article  CAS  PubMed  Google Scholar 

  38. Qin HQ, Chao HX, Zhang MD, Huang YC, Liu HY, Cheng JK, Cao LF, Xu Q, Guan L, Teng XL, Li YP, Wang K, Guo HL, Hu H, Wu MB. Precious potential regulation of carbon cathode enabling high-performance lithium-ion capacitors. Carbon. 2021;180:110. https://doi.org/10.1016/j.carbon.2021.04.083.

    Article  CAS  Google Scholar 

  39. Tian S, Song Q, Zhang X, Gao PB, Mu JL, Yin GC, Feng Y, Zhou T, Zhou J. Unveiling the role of oxygen doping in activated carbon cathode for potassium-ion capacitors. J Power Sources. 2023;579:233289. https://doi.org/10.1016/j.jpowsour.2023.233289.

    Article  CAS  Google Scholar 

  40. Wang GR, Wang WT, He XY, Li J, Yu L, Peng B, Zhang GQ. Concunrent manipulation of anion and cation adsorption kinetics in pancake-like carbon achieves ultrastable potassium ion hybrid capacitors. Energy Storage Mater. 2022;46:10. https://doi.org/10.1016/j.ensm.2021.12.047.

    Article  Google Scholar 

  41. Feng T, Wang SR, Hua YN, Zhou P, Liu G, Ji K, Lin ZY, Shi SW, Jiang XM, Zhang RB. Synthesis of biomass-derived N, O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor. J Energy Storage. 2021;44:103286. https://doi.org/10.1016/j.est.2021.103286.

    Article  Google Scholar 

  42. Yu PF, Zhang WC, Liu YL, Zheng MT, Xu F, Liang YR. General synthesis of ultrahigh-surface-area porous carbons with superior yield via preferential removal of sp2-hybridized atoms. Carbon. 2021;182:100. https://doi.org/10.1016/j.carbon.2021.05.049.

    Article  CAS  Google Scholar 

  43. Li KX, Li P, Sun ZN, Shi J, Huang MH, Chen JW, Liu S, Shi ZC, Wang HL. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy Environ. 2022;8:1091. https://doi.org/10.1016/j.gee.2022.01.002.

    Article  CAS  Google Scholar 

  44. Lai FL, Zhou GY, Li F, He ZH, Yong DY, Bai W, Huang YP, Tjiu WW, Miao YE, Pan BC, Liu TX. Highly dual-heteroatom-doped ultrathin carbon nanosheets with expanded interlayer distance for efficient energy storage. ACS Sustain Chem Eng. 2018;6(3):3143. https://doi.org/10.1021/acssuschemeng.7b03161.

    Article  CAS  Google Scholar 

  45. Chen H, Liu T, Mou JR, Zhang WJ, Jiang ZJ, Liu J, Huang JL, Liu ML. Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy. 2019;63:103836. https://doi.org/10.1016/j.nanoen.2019.06.032.

    Article  CAS  Google Scholar 

  46. Zhu CL, Wang HL, Fan WJ, Zhai SL, Wang XJ, Shi J, Huang MH, Liu S, Li Z, Chen JW. Large-scale doping-engineering enables boron/nitrogen dual-doped porous carbon for high-performance zinc ion capacitors. Rare Met. 2022;41(7):2505. https://doi.org/10.1007/s12598-022-01975-6.

    Article  CAS  Google Scholar 

  47. Fan WJ, Zhang H, Wang HL, Zhao XC, Sun SJ, Shi J, Huang MH, Liu W, Zheng YL, Li P. Dual-doped hierarchical porous carbon derived from biomass for advanced supercapacitors and lithium ion batteries. RSC Adv. 2019;9(56):32382. https://doi.org/10.1039/c9ra06914c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater. 2009;19(3):438. https://doi.org/10.1002/adfm.200801236.

    Article  CAS  Google Scholar 

  49. Lou GB, Pei G, Wu YT, Lu YZ, Wu YT, Zhu XQ, Pang YJ, Shen ZH, Wu Q, Fu SY, Chen H. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem Eng J. 2021;413:127502. https://doi.org/10.1016/j.cej.2020.127502.

    Article  CAS  Google Scholar 

  50. Chen MF, Zheng XZ, Ma YS, Dong XP. Oxygen-rich porous carbon sheets: facile one-step synthesis and enhanced electrochemical performance. Diamond Relat Mater. 2018;85:89. https://doi.org/10.1016/j.diamond.2018.03.033.

    Article  CAS  Google Scholar 

  51. Yuan CQ, Liu XH, Jia MY, Luo ZX, Yao JN. Facile preparation of N- and O-doped hollow carbon spheres derived from poly (o-phenylenediamine) for supercapacitors. J Mater Chem A. 2015;3(7):3409. https://doi.org/10.1039/c4ta06411a.

    Article  CAS  Google Scholar 

  52. Qian Y, Wu B, Li Y, Pan Z, Feng S, Lin N, Qian YT. Integrating chemical pre-potassiation with pre-modulated KF-rich electrolyte interfaces for dual-carbon potassium ion hybrid capacitor. Angew Chem Int Ed. 2023;62(9):e202217514. https://doi.org/10.1002/anie.202217514.

    Article  CAS  Google Scholar 

  53. Xiao XH, Duan XG, Song ZR, Deng XL, Deng WT, Hou HS, Zheng RJ, Zou GQ, Ji XB. High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv Funct Mater. 2022;32(18):2110476. https://doi.org/10.1002/adfm.202110476.

    Article  CAS  Google Scholar 

  54. Li DD, Zhang L, Chen HB, Wang J, Ding LX, Wang SQ, Ashman PJ, Wang HH. Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J Mater Chem A. 2016;4(22):8630. https://doi.org/10.1039/c6ta02139e.

    Article  CAS  Google Scholar 

  55. Chen JJ, Fan LQ, Wu ZX, Deng XG, Tang T, Yu FD, Huang YF, Wu JH. Design of a pseudocapacitive cathode based on polypyrrole-derived carbon tube supported anthraquinone for lithium-ion hybrid capacitors. Electrochim Acta. 2023;462: 142735. https://doi.org/10.1016/j.electacta.2023.142735.

    Article  CAS  Google Scholar 

  56. Cui YP, Liu W, Lyu Y, Zhang Y, Wang HL, Liu YJ, Li D. All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage. J Mater Chem A. 2018;6(37):18276. https://doi.org/10.1039/c8ta06184j.

    Article  CAS  Google Scholar 

  57. Ding J, Wang HL, Li Z, Cui K, Karpuzov D, Tan XH, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy?power rivals lithium ion capacitors. Energy Environ Sci. 2015;8(3):941. https://doi.org/10.1039/c4ee02986k.

    Article  CAS  Google Scholar 

  58. Gao Y, Yang ZW, Wang YZ, Wang XM. Boosting capacitive storage of cathode for lithium-ion capacitors: combining pore structure with P-doping. Electrochim Acta. 2021;368:137646. https://doi.org/10.1016/j.electacta.2020.137646.

    Article  CAS  Google Scholar 

  59. Li J, Wang B, Hu TZ, Wang YZ, Sun ZH, Wang CZ, Zhang D, Wang ZP, Li F. Coupling anodic/cathodic energy storage through in situ heterostructure regulation of ordered microporous carbon for sodium-ion hybrid capacitors. J Mater Chem A. 2021;9(6):3360. https://doi.org/10.1039/d0ta11093k.

    Article  CAS  Google Scholar 

  60. Li SN, Xu YN, Liu WH, Zhang XD, Ma YB, Peng QF, Zhang X, Sun XZ, Wang K, Ma YW. Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors. Green Energy Environ. 2022. https://doi.org/10.1016/j.gee.2022.10.006.

    Article  Google Scholar 

  61. Liu HL, Liu X, Wang HL, Zheng YL, Zhang H, Shi J, Liu W, Huang MH, Kan JL, Zhao XC, Li D. High-performance sodium-ion capacitor constructed by well-matched dual-carbon electrodes from a single biomass. ACS Sustain Chem Eng. 2019;7:12188. https://doi.org/10.1021/acssuschemeng.9b01370.

    Article  CAS  Google Scholar 

  62. Qian Y, Li Y, Pan Z, Tian J, Lin N, Qian YT. Hydrothermal ?disproportionation? of biomass into oriented carbon microsphere anode and 3D porous carbon cathode for potassium ion hybrid capacitor. Adv Funct Mater. 2021;31(30):2103115. https://doi.org/10.1002/adfm.202103115.

    Article  CAS  Google Scholar 

  63. Wu CH, Xu Q, Ning H, Zhao Y, Guo SW, Sun XT, Wang YJ, Hu H, Wu MB. Petroleum pitch derived carbon as both cathode and anode materials for advanced potassium-ion hybrid capacitors. Carbon. 2022;196:727. https://doi.org/10.1016/j.carbon.2022.05.021.

    Article  CAS  Google Scholar 

  64. Xu JX, Liu ZY, Zhang F, Tao J, Shen LF, Zhang XG. Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor. RSC Adv. 2020;10(13):7780. https://doi.org/10.1039/c9ra10225f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang CL, Xu Y, Du GY, Wu YH, Li YL, Zhao HP, Kaiser U, Lei Y. Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy. 2020;72:104661. https://doi.org/10.1016/j.nanoen.2020.104661.

    Article  CAS  Google Scholar 

  66. Fan L, Liu Q, Xu Z, Lu BG. An organic cathode for potassium dual-ion full battery. ACS Energy Lett. 2017;2(7):1614. https://doi.org/10.1021/acsenergylett.7b00378.

    Article  CAS  Google Scholar 

  67. Kim H, Park YU, Park KY, Lim HD, Hong J, Kang K. Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries. Nano Energy. 2014;4:97. https://doi.org/10.1016/j.nanoen.2013.12.009.

    Article  CAS  Google Scholar 

  68. Park S, An J, Jung I, Piner RD, An SJ, Li XS, Velamakanni A, Ruoff RS. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009;9(4):1593. https://doi.org/10.1021/nl803798y.

    Article  CAS  PubMed  Google Scholar 

  69. Qiu DP, Guan JY, Li M, Kang CH, Wei JY, Wang F, Yang R. Cucurbit[6]uril-derived nitrogen-doped hierarchical porous carbon confined in graphene network for potassium-ion hybrid capacitors. Adv Sci. 2020;7(20):2001681. https://doi.org/10.1002/advs.202001681.

    Article  CAS  Google Scholar 

  70. Dai JD, Wang LL, Xie AT, He JS, Yan YS. Reactive template and confined self-activation strategy: three-dimensional interconnected hierarchically porous N/O-doped carbon foam for enhanced supercapacitors. ACS Sustain Chem Eng. 2019;8(2):739. https://doi.org/10.1021/acssuschemeng.9b01394.

    Article  CAS  Google Scholar 

  71. Dou SM, Xu J, Yang C, Liu WD, Manke I, Zhou W, Peng X, Sun CL, Zhao KN, Yan ZH, Xu YH, Yuan QH, Chen YN, Chen RJ. Dual-function engineering to construct ultra-stable anodes for potassium-ion hybrid capacitors: N, O-doped porous carbon spheres. Nano Energy. 2022;93:106903. https://doi.org/10.1016/j.nanoen.2021.106903.

    Article  CAS  Google Scholar 

  72. Wang DW, Li F, Yin LC, Lu X, Chen ZG, Gentle IR, Lu GQ, Cheng HM. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions. Chemistry. 2012;18(17):5345. https://doi.org/10.1002/chem.201102806.

    Article  CAS  PubMed  Google Scholar 

  73. Dong SY, Li ZF, Xing ZY, Wu XY, Ji XL, Zhang XG. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl Mater Interfaces. 2018;10(18):15542. https://doi.org/10.1021/acsami.7b15314.

    Article  CAS  PubMed  Google Scholar 

  74. Liu X, Elia GA, Qin BS, Zhang H, Ruschhaupt P, Fang S, Varzi A, Passerini S. High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett. 2019;4(11):2675. https://doi.org/10.1021/acsenergylett.9b01675.

    Article  CAS  Google Scholar 

  75. Qiu DP, Guan JY, Li M, Kang CH, Wei JY, Li Y, Xie ZY, Wang F, Yang R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater. 2019;29(32):1903496. https://doi.org/10.1002/adfm.201903496.

    Article  CAS  Google Scholar 

  76. Xie ZY, Xia JN, Qiu DP, Wei JY, Li M, Wang F, Yang R. Rich-phosphorus/nitrogen co-doped carbon for boosting the kinetics of potassium-ion hybrid capacitors. Sustain Energy Fuels. 2022;6(1):162. https://doi.org/10.1039/d1se01627j.

    Article  CAS  Google Scholar 

  77. Xu Y, Ruan JF, Pang YP, Sun H, Liang C, Li HW, Yang JH, Zheng SY. Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 2020;13(1):14. https://doi.org/10.1007/s40820-020-00524-z.

    Article  CAS  Google Scholar 

  78. Zhang ZY, Li ML, Gao Y, Wei ZX, Zhang MN, Wang CZ, Zeng Y, Zou B, Chen G, Du F. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv Funct Mater. 2018;28(36):1802684. https://doi.org/10.1002/adfm.201802684.

    Article  CAS  Google Scholar 

  79. Zhou L, Zhang MY, Wang YF, Zhu YS, Fu LJ, Liu X, Wu YP, Huang W. Cubic prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim Acta. 2017;232:106. https://doi.org/10.1016/j.electacta.2017.02.096.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22179123 and 52002138), Taishan Scholar Program of Shandong Province, China (No. tsqn202211048) and the Fundamental Research Funds for the Central Universities (Nos. 202262010 and 862201013190).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Yi Wu or Huan-Lei Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3206 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Zhang, YF., Zhu, CL. et al. Carbon cathode with heteroatom doping and ultrahigh surface area enabling enhanced capacitive behavior for potassium-ion hybrid capacitors. Rare Met. 43, 2136–2149 (2024). https://doi.org/10.1007/s12598-023-02597-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02597-2

Keywords

Navigation