Skip to main content
Log in

Thickness dependence of superconductivity in layered GeP5

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

探究材料维度与超导电性之间的物理关联已经引起了大量的研究兴趣。在本工作中,我们报告了利用维度实现对层状材料GeP5的超导电性的有效调制。随着GeP5的厚度从块体减薄到~96 nm时,其超导相变温度提高了~10%,表现出超导相变温度与厚度之间奇特的负相关特性。这种奇特的负相关特性被认为源于GeP5中各种量子序之间复杂的关联耦合作用,包括较薄的GeP5材料中被抑制的电荷密度波以及增强的电子-声子耦合作用等。我们研究成果为利用维度限域作用调制材料的超导电性提供了一个新的材料与物理基础。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Shi XB, He P, Zhao WW. Dual topology in van der Waals-type superconductor Nb2S2C. Tungsten. 2023;5(3):357. https://doi.org/10.1007/s42864-022-00135-8.

  2. Guan DD, Wang DL, Ma YW. Progress of research on properties and applications of MgB2 fabricated by internal Mg diffusion method. Chin J Rare Met. 2022;46(4):497. https://doi.org/10.13373/j.cnki.cjrm.XY20040031.

  3. Shao DF, Lu WJ, Lv HY, Sun YP. Electron-doped phosphorene: a potential monolayer superconductor. EPL. 2014;108(6):67004. https://doi.org/10.1209/0295-5075/108/67004.

    Article  ADS  CAS  Google Scholar 

  4. Ge JF, Liu ZL, Liu CH, Gao CL, Qian D, Xue QK, Liu Y, Jia JF. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat Mater. 2015;14(3):285. https://doi.org/10.1038/nmat4153.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wang N, Huang CY, Zhang Y, Zhu HM. Preparation of Nb3Al powder by chemical reaction in molten salts. Rare Met. 2022;41:1671. https://doi.org/10.1007/s12598-015-0523-4.

    Article  CAS  Google Scholar 

  6. Sipos B, Kusmartseva AF, Akrap A, Berger H, Forró L, Tutiš E. From Mott state to superconductivity in 1T-TaS2. Nat Mater. 2008;7(12):960. https://doi.org/10.1038/nmat2318.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wilson JA, Di Salvo FJ, Mahajan S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv Phys. 1975;24(2):117. https://doi.org/10.1080/00018737500101391.

    Article  ADS  CAS  Google Scholar 

  8. Zheng FP, Feng J. Electron-phonon coupling and the coexistence of superconductivity and charge-density wave in monolayer NbSe2. Phys Rev B. 2019;99(16): 161119. https://doi.org/10.1103/PhysRevB.99.161119.

    Article  ADS  CAS  Google Scholar 

  9. Lian CS, Heil C, Liu XY, Si C, Giustino F, Duan WH. Coexistence of superconductivity with enhanced charge density wave order in the two-dimensional limit of TaSe2. J Phys Chem Lett. 2019;10(14):4076. https://doi.org/10.1021/acs.jpclett.9b01480.

    Article  CAS  PubMed  Google Scholar 

  10. Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T. Monolayer 1T-NbSe2 as a Mott insulator. NPG Asia Mater. 2016;8(11): e321. https://doi.org/10.1038/am.2016.157.

    Article  CAS  Google Scholar 

  11. Qin SY, Kim J, Niu Q, Shih CK. Superconductivity at the two-dimensional limit. Science. 2009;324(5932):1314. https://doi.org/10.1126/science.1170775.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhu MC, Chen D, Zhu AK, Wu YL, Han ML, Han YY, Zheng GL, Gao WS, Tian ML. Thickness dependence of quantum transport in the topological superconductor candidate SnTaS2. Appl Phys Lett. 2022;120(5): 053102. https://doi.org/10.1063/5.0080851.

    Article  ADS  CAS  Google Scholar 

  13. Li HJ, Wang HH, Gao WS, Chen Z, Han YY, Zhu XD, Tian ML. Thickness dependence of superconductivity in layered topological superconductor β-PdBi2. Nanomaterials. 2021;11(11):2826. https://doi.org/10.3390/nano11112826.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bodepudi SC, Wang X, Singh AP, Pramanik S. Thickness dependent interlayer magnetoresistance in multilayer graphene stacks. J Nanomater. 2016;2016:1. https://doi.org/10.1155/2016/8163742.

    Article  CAS  Google Scholar 

  15. Bekaert J, Khestanova E, Hopkinson DG, Birkbeck J, Clark N, Zhu MJ, Bandurin DA, Gorbachev R, Fairclough S, Zou YC, Hamer M, Terry DJ, Peters JJP, Sanchez AM, Partoens B, Haigh SJ, Milošević MV, Grigorieva IV. Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett. 2020;20(5):3808. https://doi.org/10.1021/acs.nanolett.0c00871.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Liu HL, Huangfu SX, Zhang XF, Lin H, Schilling A. Superconductivity and charge density wave formation in lithium-intercalated 2H-TaS2. Phys Rev B. 2021;104(6): 064511. https://doi.org/10.1103/PhysRevB.104.064511.

    Article  ADS  CAS  Google Scholar 

  17. Wei ZY, Hu KM, Sa BS, Wu B. Pressure-induced structure, electronic, thermodynamic and mechanical properties of Ti2AlNb orthorhombic phase by first-principles calculations. Rare Met. 2021;40(10):2964. https://doi.org/10.1007/s12598-017-0915-8.

  18. Chen KY, Wang NN, Yin QW, Gu YH, Jiang K, Tu ZJ, Gong GS, Uwatoko Y, Sun JP, Lei HC, Hu JP, Cheng JG. Double superconducting dome and triple enhancement of Tc in the Kagome superconductor CsV3Sb5 under high pressure. Phys Rev Lett. 2021;126(24): 247001. https://doi.org/10.1103/PhysRevLett.126.247001.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Shi LF, Liu ZY, Li J, Zhang XX, Wang NN, Cui Q, Chen KY, Liu QY, Yang PT, Sun JP, Wang BS, Uwatoko Y, Sui Y, Yang HX, Cheng JG. Pressure-driven superconducting dome in the vicinity of CDW in the pyrite-type superconductor CuS2. Phys Rev Mater. 2022;6(1): 014802. https://doi.org/10.1103/PhysRevMaterials.6.014802.

    Article  CAS  Google Scholar 

  20. Mogera U, Kulkarni GU. A new twist in graphene research: twisted graphene. Carbon. 2020;156:470. https://doi.org/10.1016/j.carbon.2019.09.053.

    Article  CAS  Google Scholar 

  21. Hamer MJ, Giampietri A, Kandyba V, Genuzio F, Menteş TO, Locatelli A, Gorbachev RV, Barinov A, Mucha-Kruczyński M. Moiré superlattice effects and band structure evolution in near-30-degree twisted bilayer graphene. ACS Nano. 2022;16(2):1954. https://doi.org/10.1021/acsnano.1c06439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 2018;556(7769):43. https://doi.org/10.1038/nature26160.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Navarro-Moratalla E, Island JO, Mañas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillén JA, Agraït N, Steele GA, Guinea F, Zant HSJVD, Coronado E. Enhanced superconductivity in atomically thin TaS2. Nat Commun. 2016;7(1):11043. https://doi.org/10.1038/ncomms11043.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xi XX, Zhao L, Wang ZF, Berger H, Forró L, Shan J, Mak KF. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat Nanotechnol. 2015;10(9):765. https://doi.org/10.1038/nnano.2015.143.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Xi XX, Wang ZF, Zhao WW, Park JH, Law KT, Berger H, Forró L, Shan J, Mak KF. Ising pairing in superconducting NbSe2 atomic layers. Nat Phys. 2016;12(2):139. https://doi.org/10.1038/NPHYS3538.

    Article  CAS  Google Scholar 

  26. Li WW, Li HQ, Lu ZJ, Gan L, Ke LB, Zhai TY, Zhou HS. Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energy Environ Sci. 2015;8(12):3629. https://doi.org/10.1039/C5EE02524A.

    Article  CAS  Google Scholar 

  27. Donohue PC, Young HS. Synthesis, structure, and superconductivity of new high pressure phases in the systems Ge-P and Ge-As. J Solid State Chem. 1970;1:143. https://doi.org/10.1016/0022-4596(70)90005-8.

    Article  ADS  CAS  Google Scholar 

  28. Yang BC, Nie AM, Chang YK, Cheng Y, Wen FS, Xiang JY, Li L, Liu ZY, Tian YJ. Metallic layered germanium phosphide GeP5 for high rate flexible all-solid-state supercapacitors. J Mater Chem A. 2018;6(40):19409. https://doi.org/10.1039/C8TA06568C.

    Article  CAS  Google Scholar 

  29. Dai YJ, Zhao SX, Han H, Yan YF, Liu WH, Zhu H, Li L, Tang X, Li Y, Li H, Zhang CJ. Controlled growth of indium selenides by high-pressure and high-temperature method. Front Mater. 2022;8: 816821. https://doi.org/10.3389/fmats.2021.816821.

    Article  Google Scholar 

  30. Chang YK, Mu CP, Yang BC, Nie AM, Wang BC, Xiang JY, Yang Y, Wen FS, Liu ZY. Microwave absorbing properties of two dimensional materials GeP5 enhanced after annealing treatment. Appl Phys Lett. 2019;114(1): 013103. https://doi.org/10.1063/1.5066337.

    Article  ADS  CAS  Google Scholar 

  31. Zhou XR, Feng ZX, Qin PX, Yan H, Wang XN, Nie P, Wu HJ, Zhang X, Chen HY, Meng ZA, Zhu ZW, Liu ZQ. Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure. Rare Met. 2021;40:2847. https://doi.org/10.1007/s12598-021-01768-3.

    Article  CAS  Google Scholar 

  32. Peng J, Yu Z, Wu JJ, Zhou Y, Guo YQ, Li ZJ, Zhao JY, Wu CZ, Xie Y. Disorder enhanced superconductivity toward TaS2 monolayer. ACS Nano. 2018;12:9461. https://doi.org/10.1021/acsnano.8b04718.

    Article  CAS  PubMed  Google Scholar 

  33. Yu X-L, Wu J. Superconducting dome driven by intervalley phonon scattering in monolayer MoS2. New J Phys. 2020;22(1): 013015. https://doi.org/10.1088/1367-2630/ab5cce.

    Article  CAS  Google Scholar 

  34. Kang L, Jin BB, Liu XY, Jia XQ, Chen J, Ji ZM, Xu WW, Wu PH, Mi SB, Pimenov A, Wu YJ, Wang BG. Suppression of superconductivity in epitaxial NbN ultrathin films. J Appl Phys. 2011;109(3): 033908. https://doi.org/10.1063/1.3518037.

    Article  ADS  CAS  Google Scholar 

  35. Du Q, Gunzburger MD, Peterson JS. Analysis and approximation of the ginzburg-landau model of superconductivity. SIAM Rev Soc Ind Appl Math. 1992;34(1):54.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11904001 and 11904004), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences Large-Scale Scientific Facility (No. U1932156) and Anhui Innovation Project (No. 2021LCX007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Han or Hui Li.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1233 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Yang, KM., Gan, W. et al. Thickness dependence of superconductivity in layered GeP5. Rare Met. 43, 1323–1328 (2024). https://doi.org/10.1007/s12598-023-02526-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02526-3

Navigation