Skip to main content
Log in

Functional decoration on a regenerable bifunctional porous covalent organic framework probe for rapid detection and adsorption of copper ions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Developing fluorescence porous probe for detecting and eliminating Cu2+ contamination in water or biosystem is an essential research project that has attracted considerable attention. However, improving the fluorescence detecting efficiency while enhancing the adsorption capacity of the porous probe is of great challenge. Herein, a bifunctional two-dimensional imine-based porous covalent organic framework (TTP-COF) probe was designed and synthesized from 1,3,5-tris (4-aminophenyl) benzene (TAPB) and 2,4,6-Triformylphloroglucinol (TP) ligand. TTP-COF displayed rapid detection of Cu2+ (limit of detection (LOD) = 10 nmol·L−1 while achieving a high adsorption capacity of 214 mg·g−1 (pH = 6) at room temperature with high reusability (> 5 cycles). The key roles and contributions of high π-conjugate and delocalized electrons in TABP and functional –OH groups in TP were proved. More importantly, the fluorescence quenching mechanism of TTP-COF was studied by density functional theory theoretical calculations, revealing the crucial role of intramolecular hydrogen bonds among C=N and –OH groups and the blocking of the excited state intramolecular proton transfer process in detecting process of Cu2+.

Graphical abstract

摘要

开发用于检测和消除水中或生物系统中Cu2+污染的荧光多孔探针是一项备受关注的重要工作。然而,在提高多孔探针的吸附能力的同时提高荧光检测效率是一项巨大的挑战。在本文中,以1,3,5-三(4-氨基苯基)苯(TAPB)和2,4,6-三甲酰基间苯三酚(TP)为原料,设计合成了一种双功能二维亚胺基多孔共价有机框架探针(TTP-COF)。该探针显示出对Cu2+的快速检测能力(LOD=10 nmol·L−1),高的吸附容量(214 mg·g-1,pH=6)且具有多次循环使用性能(>5个循环)。TABP中高π共轭电子和离域电子以及TP中功能-OH基团的关键作用和贡献导致探针具有强荧光。更重要的是,通过DFT理论计算研究了TTP-COF的荧光淬灭机制,揭示了C=N和-OH基团之间的分子内氢键存在的重要性以及在Cu2+检测过程中激发态分子内质子转移(ESIPT)过程的阻断作用导致荧光发生变化。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olivares M, Uauy R. Copper as an essential nutrient. Am J Clin Nutr. 1996;63(5):791S.

    Article  CAS  Google Scholar 

  2. Huang Y, Zeng XF, Guo LL, Lan JH, Zhang LL, Cao DP. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep Purif Technol. 2018;194:462. https://doi.org/10.1016/j.seppur.2017.11.068.

    Article  CAS  Google Scholar 

  3. Li YR, Xu XL, Guo HB, Bian Y, Li J, Zhang F. Magnetic graphene oxide-based covalent organic frameworks as novel adsorbent for extraction and separation of triazine herbicides from fruit and vegetable samples. Anal Chim Acta. 2022;1219:339984. https://doi.org/10.1016/j.aca.2022.339984.

    Article  CAS  Google Scholar 

  4. Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev. 2008;108(5):1517. https://doi.org/10.1021/cr078203u.

    Article  CAS  Google Scholar 

  5. Fu FL, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manage. 2011;92(3):407. https://doi.org/10.1016/j.jenvman.2010.11.011.

    Article  CAS  Google Scholar 

  6. Cui C, Wang QB, Xin CH, Liu QY, Deng X, Liu TT, Xu XH, Zhang XM. Covalent organic framework with bidentate ligand sites as reliable fluorescent sensor for Cu2+. Microporous Mesoporous Mater. 2020;299:110122. https://doi.org/10.1016/j.micromeso.2020.110122.

    Article  CAS  Google Scholar 

  7. Zhuang ST, Liu Y, Wang JL. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. J Hazard Mater. 2020;383:121126. https://doi.org/10.1016/j.jhazmat.2019.121126.

    Article  CAS  Google Scholar 

  8. Kiliç HD, Deveci S, Dönmez KB, Çetinkaya E, Karadağ S, Doğu M. Application of stripping voltammetry method for the analysis of available copper, zinc and manganese contents in soil samples. Int J Environ Anal Chem. 2018;98(4):308. https://doi.org/10.1080/03067319.2018.1456534.

    Article  CAS  Google Scholar 

  9. Chen XF, Hu FF, Zang MW, Sun Z, Liu Y, Tong J. Determination of trace elements in high purity gold by laser ablation inductively coupled plasma mass spectrometry. Chin J Rare Met. 2021;45(3):333. https://doi.org/10.13373/j.cnki.cjrm.xy18110002.

  10. Chan MS, Huang SD. Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector. Talanta. 2000;51(2):373. https://doi.org/10.1016/S0039-9140(99)00283-0.

    Article  CAS  Google Scholar 

  11. Rasheed T. Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: perspective and challenges. Sci Total Environ. 2022;833:155279. https://doi.org/10.1016/j.scitotenv.2022.155279.

    Article  CAS  Google Scholar 

  12. Qian HL, Wang Y, Yan XP. Covalent organic frameworks for environmental analysis. TrAC Trends Anal Chem. 2022;147:116516. https://doi.org/10.1016/j.trac.2021.116516.

    Article  CAS  Google Scholar 

  13. Ma J, Shu T, Sun YP, Zhou X, Ren CY, Su L, Zhang X. Luminescent covalent organic frameworks for biosensing and bioimaging applications. Small. 2022;18(3):2103516. https://doi.org/10.1002/smll.202103516.

    Article  CAS  Google Scholar 

  14. Aranda CA, Byranvand MM, Essig S, Saliba M. Perovskites: weaving a network of knowledge beyond photovoltaics. J Mater Chem A. 2022;10(37):19046. https://doi.org/10.1039/D2TA01135B.

    Article  CAS  Google Scholar 

  15. Dong H, Zhang LX, Xu H, Yin YY, Zhao XB, Bie LJ. H-bonding interactions enable a 3D pillared cobalt (II) coordination polymer for touchless finger moisture detection. Tungsten.2023;5(1):109. https://doi.org/10.1007/s42864-022-00159-0.

  16. Mocci F, de Villiers EL, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon nanodots from an in silico perspective. Chem Rev. 2022;122(16):13709. https://doi.org/10.1021/acs.chemrev.1c00864.

    Article  CAS  Google Scholar 

  17. Guo BY, Liu G, Wei HP, Qiu JM, Zhuang JL, Zhang XJ, Zheng MT, Li W, Zhang HR, Hu CF, Lei BF, Liu YL. The role of fluorescent carbon dots in crops: mechanism and applications. SmartMat. 2022;3(2):208. https://doi.org/10.1002/smm2.1111.

    Article  CAS  Google Scholar 

  18. Wang YQ, Li XC, Zhao SJ, Wang BH, Song XZ, Xiao JF, Lan MH. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coord Chem Rev. 2022;470:214703. https://doi.org/10.1016/j.ccr.2022.214703.

    Article  CAS  Google Scholar 

  19. Wang BY, Cai HJ, Waterhouse GIN, Qu XL, Yang B, Lu SY. carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review. Small Sci. 2022;2(6):2200012. https://doi.org/10.1002/smsc.202200012.

    Article  CAS  Google Scholar 

  20. Xu QQ, Cai HW, Li WJ, Wu M, Wu YZ, Gong X. Carbon dot/inorganic nanomaterial composites. J Mater Chem A. 2022;10(28):14709. https://doi.org/10.1039/D2TA02628G.

    Article  CAS  Google Scholar 

  21. Dong H, Zhang LX, Xu H, Yin YY, Zhao XB, Bie LJ. H-bonding interactions enable a 3D pillared cobalt (II) coordination polymer for touchless finger moisture detection. Tungsten.2023;5(1):109. https://doi.org/10.1007/s42864-022-00159-0.

  22. Yang YX, Ge KK, ur Rehman S, Bi H. Nanocarbon-based electrode materials applied for supercapacitors. Rare Met. 2022;41(12):3957. https://doi.org/10.1007/s12598-022-02091-1.

    Article  CAS  Google Scholar 

  23. Wang LM, Liu WY, Hu ML, Yao JS, Wang P, Liu JH, He M, Gao Y, Li ZX. Rare earth-based MOF@mesoporous silica nanoplatform for long-term and luminescence trackable chemotherapy. Rare Met. 2022;41(8):2701. https://doi.org/10.1007/s12598-022-01978-3.

    Article  CAS  Google Scholar 

  24. Salemi H, Debruyne M, Van Speybroeck V, Van Der Voort P, D’Hooghe M, Stevens CV. Covalent organic framework supported palladium catalysts. J Mater Chem A. 2022;10(39):20707. https://doi.org/10.1039/D2TA05234B.

    Article  CAS  Google Scholar 

  25. Liu Y, Jiang XY, Chen LK, Cui Y, Li QY, Zhao XS, Han XG, Zheng YC, Wang XJ. Rational design of a phenothiazine-based donor–acceptor covalent organic framework for enhanced photocatalytic oxidative coupling of amines and cyclization of thioamides. J Mater Chemi A. 2023;11(3):1208. https://doi.org/10.1039/D2TA07177K.

    Article  CAS  Google Scholar 

  26. Kogolev D, Semyonov O, Metalnikova N, Fatkullin M, Rodriguez RD, Slepicka P, Yamauchi Y, Guselnikova O, Boukherroub R, Postnikov PS. Waste PET upcycling to conductive carbon-based composite through laser-assisted carbonization of UiO-66. J Mater Chem A. 2023;11(3):1108. https://doi.org/10.1039/D2TA08127J.

    Article  CAS  Google Scholar 

  27. Zhang XY, Zhang L, Zhou TY, Sun BH, Wei S, Cao YF, Liu MY, Sang PF, Wei C, Chen W, Chen H. High specific surface area inherited from sea-urchin-like AACH clusters prepared by a novel spray precipitation. Rare Met. 2022;41(11):3684. https://doi.org/10.1007/s12598-022-02102-1.

    Article  CAS  Google Scholar 

  28. Yin CC, Li Z, Zhao DC, Yang JY, Zhang Y, Du Y, Wang Y. Azo-branched covalent organic framework thin films as active separators for superior sodium-sulfur batteries. ACS Nano. 2022;16(9):14178. https://doi.org/10.1021/acsnano.2c04273.

    Article  CAS  Google Scholar 

  29. Liu WB, Gong L, Liu ZX, Jin YC, Pan HH, Yang XY, Yu BQ, Li N, Qi DD, Wang K, Wang H, Jiang JZ. Conjugated three-dimensional high-connected covalent organic frameworks for lithium-sulfur batteries. J Am Chem Soc. 2022;144(37):17209. https://doi.org/10.1021/jacs.2c07596.

    Article  CAS  Google Scholar 

  30. Tang TY, Zhang LG, Guo ZF, Gu XX. Development of cathode and anode materials in lithium sulfur batteries. Chin J Rare Met. 2022;46(7):954. https://doi.org/10.13373/j.cnki.cjrm.XY21070001.

  31. Zhang AR, Liu XW, Hong JH, Guo RX, Zhou YY, Ai YJ. A mussel-pearl side chain interaction in mercury(II) and phenol removal by sulfur-functionalized covalent organic frameworks: a DFT study. Sci Total Environ. 2022;838:156082. https://doi.org/10.1016/j.scitotenv.2022.156082.

    Article  CAS  Google Scholar 

  32. Liu C, Jin YC, Yu ZH, Gong L, Wang HL, Yu BQ, Zhang W, Jiang JZ. Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance. J Am Chem Soc. 2022;144(27):12390. https://doi.org/10.1021/jacs.2c03959.

    Article  CAS  Google Scholar 

  33. Faheem M, Aziz S, Jing X, Ma TT, Du JY, Sun FX, Tian YY, Zhu GS. Dual luminescent covalent organic frameworks for nitro-explosive detection. J Mater Chem A. 2019;7(47):27148. https://doi.org/10.1039/C9TA09497K.

    Article  CAS  Google Scholar 

  34. Bai YY, Chen L, He LW, Li BY, Chen LX, Wu FQ, Chen LH, Zhang MX, Liu ZY, Chai Z, Wang SA. Precise recognition of palladium through interlaminar chelation in a covalent organic framework. Chem. 2022;8(5):1442. https://doi.org/10.1016/j.chempr.2022.02.016.

    Article  CAS  Google Scholar 

  35. Yan Y, Cui YB, Wang QY, Che ZX, Liu T, Li AR, Zhou W. Mg-doped CaCO3 nanoarchitectures assembled by (4(41)over-bar) high-index facets for efficient trace removal of Pb(II). Rare Met. 2022;42(2):525. https://doi.org/10.1007/s12598-022-02181-0.

    Article  CAS  Google Scholar 

  36. Zhu T, Zhang Y, Chen Y, Liu JL, Song XL. Synthesis of novel hydrated ferric oxide biochar nanohybrids for efficient arsenic removal from wastewater. Rare Met. 2022;41(5):1677. https://doi.org/10.1007/s12598-021-01920-z.

    Article  CAS  Google Scholar 

  37. Yan ZF, Fang L, He ZG, Xie H, Liu BB, Guo B, Yao YW. Surfactant-modulated a highly sensitive fluorescent probe of fully conjugated covalent organic nanosheets for detecting copper ions in aqueous solution. Small. 2022;18(21):2200388. https://doi.org/10.1002/smll.202200388.

    Article  CAS  Google Scholar 

  38. Niu CP, Zhang CR, Cui WR, Yi SM, Liang RP, Qiu JD. A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. J Hazard Mater. 2022;425:127951. https://doi.org/10.1016/j.jhazmat.2021.127951.

    Article  CAS  Google Scholar 

  39. Feng HF, Yu YX, Jiang SQ, Shang J, Cheng Y, Wang L, Hao WC, Wang TM. Synthesis of magnetic core–shell iron nanochains for potential applications in Cr(VI) ion pollution treatment. Rare Met. 2021;40(1):176. https://doi.org/10.1007/s12598-014-0408-y.

    Article  CAS  Google Scholar 

  40. Zeng M, Zhang TA, Lv GZ, Dou ZH, Liu Y, Zhang Y. Adsorption of Au(III) ions on xanthated crosslinked chitosan resin in hydrochloric acid medium. Rare Met. 2021;40(3):743. https://doi.org/10.1007/s12598-014-0279-2.

    Article  CAS  Google Scholar 

  41. Li ZP, Zhang YW, Xia H, Mu Y, Liu XM. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem Commun. 2016;52(39):6613. https://doi.org/10.1039/C6CC01476C.

    Article  CAS  Google Scholar 

  42. Li Y, Wang C, Ma SJ, Zhang HY, Ou JJ, Wei YM, Ye ML. Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions. ACS Appl Mater Interfaces. 2019;11(12):11706. https://doi.org/10.1021/acsami.8b18502.

    Article  CAS  Google Scholar 

  43. Wan JQ, Shi W, Li Y, Yu Y, Wu XH, Li ZP, Lee SY, Lee KH. Excellent crystallinity and stability covalent-organic frameworks with high emission and anions sensing. Macromol Rapid Commun. 2022;43(20):2200393. https://doi.org/10.1002/marc.202200393.

    Article  CAS  Google Scholar 

  44. Nhien PQ, Wu PH, Wu CH, Wu JI, Hue BTB, Du BW, Ko FH, Weng CC, Li YK, Lin HC. Multi-stimuli responsive fluorescence of amphiphilic AIEgen copolymers for ultrafast, highly sensitive and selective copper ion detection in water. Sens Actuators B Chem. 2021;344:130241. https://doi.org/10.1016/j.snb.2021.130241.

    Article  CAS  Google Scholar 

  45. Frisch MJT, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Gaussian Inc: Wallingford. USA: CT; 2009.

    Google Scholar 

  46. Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys. 1980;72(1):650. https://doi.org/10.1063/1.438955.

    Article  CAS  Google Scholar 

  47. McLean AD, Chandler GS. Contracted Gaussian basis sets for molecular calculations I Second row atoms, Z=11–18. J Chem Phys. 1980;72(10):5639. https://doi.org/10.1063/1.438980.

    Article  CAS  Google Scholar 

  48. Sosa CP, Andzelm JW, Elkin BC, Wimmer E, Dobbs KD, Dixon DA. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J Phys Chem. 1992;96:6630. https://doi.org/10.1021/j100195a022.

    Article  CAS  Google Scholar 

  49. Godbout N, Salahub DR, Andzelm J, Wimmer E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I Boron through neon, optimization technique and validation. Can J Chem. 1992;70(2):560. https://doi.org/10.1139/v92-079.

    Article  CAS  Google Scholar 

  50. Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett. 1984;52(12):997. https://doi.org/10.1007/978-1-4757-9975-0_7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22001156 and 22271178), the Innovation Capability Support Program of Shaanxi (No. 2022KJXX-88) and the Technology Innovation Leading Program of Shaanxi (No. 2020QFY07-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Lang Jin or Wen-Huan Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1369 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YL., Jin, XL., Ma, YT. et al. Functional decoration on a regenerable bifunctional porous covalent organic framework probe for rapid detection and adsorption of copper ions. Rare Met. 43, 758–769 (2024). https://doi.org/10.1007/s12598-023-02476-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02476-w

Keywords

Navigation