Skip to main content
Log in

Fabrication of corrosion inhibiting microcapsules functional coating and their high-efficiency corrosion resistance

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphical abstract

摘要

本文采用自组装法将苯并三氮唑(benzotriazole, BTA)负载入碳酸钙微球壳内, 制备了一种新型高效缓蚀微胶囊, 将其添加并分散至环氧树脂涂料中, 获得了一种新型耐蚀性功能涂层。采用极化曲线测试验证BTA对铝合金基体的缓蚀作用, 利用扫描电镜、激光共聚焦拉曼光谱、热重分析等验证缓蚀微胶囊的有效性及对缓蚀剂负载能力, 最后通过交流阻抗测试验证缓蚀微胶囊对功能涂层耐蚀性的影响。结果表明: 该缓蚀微胶囊对BTA负载量可达到36.57 wt%, 将其添加到涂层中经过3.5 wt% NaCl溶液浸泡腐蚀后, BTA可以得到有效释放, 浸泡5天后, 涂层仍具有较高的阻抗值, 相较于空白对照涂层样品显示出良好的耐腐蚀能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zhang X, Liu S. Aerocraft aluminum alloys and their materials processing. Mater China. 2013;32(1):39. https://doi.org/10.7502/j.issn.1674-3962.2013.01.04.

    Article  CAS  Google Scholar 

  2. Zhang B, Fang Z, Li X, Dong C. Status and prospect of corrosion protection technology about aluminium alloy ship. Mater China. 2014;33(7):414. https://doi.org/10.7502/j.issn.1674-3962.2014.07.05.

    Article  Google Scholar 

  3. Zhu S, Li ZH, Yan LZ, Li XW, Zhang YG, Xiong BQ. Bake-hardening response in a novel Al-Mg-Si-Cu-Zn alloy with pre-aging. Chin J Rare Met. 2022;46(3):281. https://doi.org/10.13373/j.cnki.cjrm.XY18090025.

    Article  Google Scholar 

  4. Tan SZ, Luo BH, Bai ZH, Wang S, Jiang G. Stress corrosion behavior of 7N01 aluminum alloy. Chin J Rare Met. 2021;45(10):1162. https://doi.org/10.13373/j.cnki.cjrm.xy19050001.

    Article  CAS  Google Scholar 

  5. Peng GS, Huang J, Gu YC, Song GS. Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al-air battery. Rare Met. 2021;40(12):3501. https://doi.org/10.1007/s12598-020-01687-9.

    Article  CAS  Google Scholar 

  6. Esquivel J, Gupta RK. Review-corrosion-resistant metastable Al alloys: an overview of corrosion mechanisms. J Electrochem Soc. 2020;167(8):1. https://doi.org/10.1149/1945-7111/ab8a97.

    Article  CAS  Google Scholar 

  7. Meng YB, Li SM, Liu JH, Yu M, Tian WM. Intergranular corrosion of spark plasma sintered 2024 aluminum alloy at different heat treatment states. Rare Met. 2022;41(11):3865. https://doi.org/10.1007/s12598-022-01990-7.

    Article  CAS  Google Scholar 

  8. Xhanari K, Finsgar M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: a review. Arab J Chem. 2019;12(8):4646. https://doi.org/10.1016/j.arabjc.2016.08.009.

    Article  CAS  Google Scholar 

  9. Hrimla M, Bahsis L, Laamari MR, Julve M, Stiriba SE. An overview on the performance of 1,2,3-triazole derivatives as corrosion inhibitors for metal surfaces. Int J Mol Sci. 2022;23(1):1. https://doi.org/10.3390/ijms23010016.

    Article  CAS  Google Scholar 

  10. Schiessl P, Mayer TF, Osterminski K. Influence of the chromate content in cement on the corrosion behaviour of steel in concrete. Mater Corros Werkst Und Korrosion. 2008;59(2):115. https://doi.org/10.1002/maco.200804160.

    Article  CAS  Google Scholar 

  11. Volaric B, Milosev I. Rare earth chloride and nitrate salts as individual and mixed inhibitors for aluminium alloy 7075–T6 in chloride solution. Corros Eng Sci Technol. 2017;52(3):201. https://doi.org/10.1080/1478422x.2016.1245957.

    Article  CAS  Google Scholar 

  12. Kakaroglou A, Domini M, De Graeve I. Encapsulation and and incorporation of sodium molybdate in polyurethane coatings and study of its corrosion inhibition on mild steel. Surf Coat Technol. 2016;303:330. https://doi.org/10.1016/j.surfcoat.2016.02.007.

    Article  CAS  Google Scholar 

  13. Zheludkevich ML, Yasakau KA, Poznyak SK, Ferreira MGS. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros Sci. 2005;47(12):3368. https://doi.org/10.1016/j.corsci.2005.05.040.

    Article  CAS  Google Scholar 

  14. Somers AE, Peng Y, Chong AL, Forsyth M, MacFarlane DR, Deacon GB, Hughes AE, Hinton BRW, Mardel JI, Junk PC. Advances in the development of rare earth metal and carboxylate compounds as corrosion inhibitors for steel. Corros Eng Sci Technol. 2020;55(4):311. https://doi.org/10.1080/1478422x.2020.1754600.

    Article  CAS  Google Scholar 

  15. Li PB, Wang YX, Shao ZX, Wu BT, Li H, Gao MM, Liu KG, Shi KR. Enhanced corrosion protection of magnesium alloy via in situ Mg-Al LDH coating modified by core-shell structured Zn-Al LDH@ZIF-8. Rare Met. 2022;41(8):2745. https://doi.org/10.1007/s12598-022-01977-4.

    Article  CAS  Google Scholar 

  16. Hu QQ, Chai L, Liang K, Jiang YX, Yang G, Zhang LB, Yin LJ, Wang X, Liu T, Lu HP, Deng LJ. Effective corrosion protection of magnetic microwave absorber with designed macromolecular network barrier. Rare Met. 2023;42:558. https://doi.org/10.1007/s12598-022-02141-8.

    Article  CAS  Google Scholar 

  17. Xu QK, Zhang YL, Xie CD, Li MZ, Zhao Y, Chen F. Preparation and corrosion resistance of color superhydrophobic films on aluminum base surface. Chin J Rare Metals. 2022;46(12):1580. https://doi.org/10.13373/j.cnki.cjrm.XY20110034.

    Article  Google Scholar 

  18. Sadabadi H, Allahkaram SR, Kordijazi A, Rohatgi PK. Self-healing coatings loaded by nano/microcapsules: a review. Prot Met Phys Chem Surf. 2022;58(2):287. https://doi.org/10.1134/s2070205122020162.

    Article  CAS  Google Scholar 

  19. Liu CB, Cheng L, Cui LY, Qian B, Zeng RC. Corrosion self-diagnosing and self-repairing polymeric coatings based on zeolitic imidazolate framework decorated hydroxyapatite nanocontainer on steel. Chem Eng J. 2022;431:13347. https://doi.org/10.1016/j.cej.2021.133476.

    Article  CAS  Google Scholar 

  20. Liu YP, Sun WX, Feng M, Li TH, Wang DA. A TiO2 nanotube coating based TENG with self-healable triboelectric property for energy harvesting and anti-corrosion. Adv Mater Interf. 2022;9(33):220187. https://doi.org/10.1002/admi.202201287.

    Article  CAS  Google Scholar 

  21. Yan DS, Zhang ZH, Zhang WJ, Wang YL, Zhang M, Zhang T, Wang J. Smart self-healing coating based on the highly dispersed silica/carbon nanotube nanomaterial for corrosion protection of steel. Progr Organic Coat. 2022;164:106694. https://doi.org/10.1016/j.porgcoat.2021.106694.

    Article  CAS  Google Scholar 

  22. Wang M, Liu X, Wang JH, Hu WB. Preparation, corrosion resistance and self-healing behavior of Cu-MBT@HNTs/epoxy coating. React Funct Polym. 2021;160:104826. https://doi.org/10.1016/j.reactfunctpolym.2021.104826.

    Article  CAS  Google Scholar 

  23. Ji XH, Wang W, Zhao X, Wang LF, Ma FB, Wang YL, Duan JZ, Hou BR. Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers. J Mater Sci Technol. 2022;101:128. https://doi.org/10.1016/j.jmst.2021.06.014.

    Article  CAS  Google Scholar 

  24. Xu S, Li J, Qiu HX, Xue YH, Yang JH. Repeated self-healing of composite coatings with core-shell fibres. Compos Commun. 2020;19:220. https://doi.org/10.1016/j.coco.2020.04.007.

    Article  Google Scholar 

  25. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S. Autonomic healing of polymer composites. Nature. 2001;409(6822):794. https://doi.org/10.1038/35057232.

    Article  CAS  Google Scholar 

  26. Garcia SJ, Fischer HR, van der Zwaag S. A critical appraisal of the potential of self healing polymeric coatings. Prog Org Coat. 2011;72(3):211. https://doi.org/10.1016/j.porgcoat.2011.06.016.

    Article  CAS  Google Scholar 

  27. Ullah H, Azizli KAM, Man ZB, Ismail MBC, Khan MI. The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review. Polym Rev. 2016;56(3):429. https://doi.org/10.1080/15583724.2015.1107098.

    Article  CAS  Google Scholar 

  28. An S, Lee MW, Yarin AL, Yoon SS. A review on corrosion-protective extrinsic self-healing: comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem Eng J. 2018;344:206. https://doi.org/10.1016/j.cej.2018.03.040.

    Article  CAS  Google Scholar 

  29. Tatiya PD, Hedaoo RK, Mahulikar PP, Gite VV. Novel polyurea microcapsules using dendritic functional monomer: synthesis, characterization, and its use in self-healing and anticorrosive polyurethane coatings. Ind Eng Chem Res. 2013;52(4):1562. https://doi.org/10.1021/ie301813a.

    Article  CAS  Google Scholar 

  30. Liu X, Zhang H, Wang J, Wang Z, Wang S. Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surf Coat Technol. 2012;206(23):4976. https://doi.org/10.1016/j.surfcoat.2012.05.133.

    Article  CAS  Google Scholar 

  31. Borisova D, Moehwald H, Shchukin DG. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano. 2011;5(3):1939. https://doi.org/10.1021/nn102871v.

    Article  CAS  Google Scholar 

  32. Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T. Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sustain Energy Rev. 2011;15(2):1373. https://doi.org/10.1016/j.rser.2010.10.006.

    Article  CAS  Google Scholar 

  33. Nelson G. Application of microencapsulation in textiles. Int J Pharm. 2002;242(1–2):55. https://doi.org/10.1016/s0378-5173(02)00141-2.

    Article  CAS  Google Scholar 

  34. Volodkin DV, Larionova NI, Sukhorukov GB. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromol. 2004;5(5):1962. https://doi.org/10.1021/bm049669e.

    Article  CAS  Google Scholar 

  35. Cui G, Bi Z, Wang S, Liu J, Xing X, Li Z, Wang B. A comprehensive review on smart anti-corrosive coatings. Prog Org Coat. 2020;148:1. https://doi.org/10.1016/j.porgcoat.2020.105821.

    Article  CAS  Google Scholar 

  36. Xu Y, Zhao A, Wang X, Xue H, Liu F. Influence of curing accelerators on the imidization of polyamic acids and properties of polyimide films. J Wuhan Univ Technol Mater Sci Edit. 2016;31(5):1137. https://doi.org/10.1007/s11595-016-1502-9.

    Article  CAS  Google Scholar 

  37. Li J, Zhu J, Zhu S, Liu J, Li B. Kinetics of calcium carbonate decomposition under rapid heating condition. China Powder Sci Technol. 2018;24(6):1. https://doi.org/10.13732/j.issn.1008-5548.2018.06.001.

    Article  Google Scholar 

  38. Metikos-Hukovic M, Furic K, Babic R, Marinovic A. Surface-enhanced Raman scattering (SERS) of benzotriazole derivative corrosion inhibitor prepared in aqueous media. Surf Interface Anal. 1999;27(11):1016.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National New Material Production and Application Demonstration Platform Construction Project (No. TC190H3ZV-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Long Hao or Xing-Xiang Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, HR., Lu, L., Hao, XL. et al. Fabrication of corrosion inhibiting microcapsules functional coating and their high-efficiency corrosion resistance. Rare Met. 43, 842–848 (2024). https://doi.org/10.1007/s12598-023-02436-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02436-4

Navigation