Skip to main content
Log in

Development of UiO-66-NH2 and RuO2 composite-modified carbon fiber for highly sensitive sensing of ferulic acid

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphic abstract

摘要

通过脉冲激光沉积法和电泳沉积法在碳纤维布上制备得到UiO-66-NH2 & RuO2 复合物,并将此类复合物应用于阿魏酸电化学传感器中。探究了UiO-66-NH2 & RuO2 复合物的表面形貌、化学组成及成键情况,分析了阿魏酸在UiO-66-NH2 & RuO2 复合物电极上的电化学反应过程。结果显示,在UiO-66-NH2体系中引入RuO2可以有效提高UiO-66-NH2的导电能力,复合物整体表现出良好的电催化活性。基于UiO-66-NH2 & RuO2 复合物的电化学传感器可以对阿魏酸进行有效检测,并且灵敏度、选择性和稳定性优异。差分脉冲伏安法显示了两个线性阿魏酸浓度区间:0.08-2.00 和2-15 mol·L−1,阿魏酸的最低检测限为 0.021 mol·L−1。此阿魏酸电化学传感器也可以对实际中药材中的阿魏酸进行检测。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ou S, Kwok KC. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric. 2004;84(11):1261. https://doi.org/10.1002/jsfa.1873.

    Article  CAS  Google Scholar 

  2. Girsang E, Lister INE, Ginting CN, Bethasari M, Amalia A, Widowati W. Comparison of antiaging and antioxidant activities of protocatechuic and ferulic acids. Mole Cell Biomed Sci. 2020;4(2):68. https://doi.org/10.21705/mcbs.v4i2.90.

    Article  Google Scholar 

  3. Yin ZN, Wu WJ, Sun CZ, Liu HF, Chen WB, Zhan QP, Lei ZG, Xin X, Ma JJ, Yao K, Min T, Zhang MM, Wu H. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of aspergillus niger. Biomed Environ Sci. 2019;32(1):11. https://doi.org/10.3967/bes2019.002.

    Article  CAS  Google Scholar 

  4. Dra LA, Sellami S, Rais H, Aziz F, Aghraz A, Bekkouche K, Markouk M, Larhsini M. Antidiabetic potential of Caralluma europaea against alloxan-induced diabetes in mice. Saudi J Biol Sci. 2019;26(6):1171. https://doi.org/10.1016/j.sjbs.2018.05.028.

    Article  CAS  Google Scholar 

  5. Shuai S, Yue G. Ferulic acid, a potential antithrombotic drug. J Lung Health Dis. 2018;2(2):25. https://doi.org/10.29245/2689-999X/2017/2.1127.

    Article  Google Scholar 

  6. Li Y, Bi K. HPLC determination of ferulic acid in rat plasma after oral administration of Rhizoma Chuanxiong and its compound preparation. Biomed Chromatogr. 2003;17(8):543. https://doi.org/10.1002/bmc.274.

    Article  CAS  Google Scholar 

  7. Sharma OP, Bhat TK, Singh B. Thin-layer chromatography of gallic acid, methyl gallate, pyrogallol, phloroglucinol, catechol, resorcinol, hydroquinone, catechin, epicatechin, cinnamic acid, p-coumaric acid, ferulic acid and tannic acid. J Chromatogr A. 1998;822(1):167. https://doi.org/10.1016/S0021-9673(98)00490-7.

    Article  CAS  Google Scholar 

  8. Ji S, Chai Y, Wu Y, Yin X, Liang D, Xu Z, Li X. Determination of ferulic acid in Angelica sinensis and Chuanxiong by capillary zone electrophoresis. Biomed Chromatogr. 1999;13:333. https://doi.org/10.1002/(SICI)1099-0801(199908)13:5%3C333::AID-BMC834%3E3.0.CO;2-P.

    Article  CAS  Google Scholar 

  9. Huang L, Tian S, Zhao W, Liu K, Guo J. Electrochemical vitamin sensors: a critical review. Talanta. 2021;222:121645. https://doi.org/10.1016/j.talanta.2020.121645.

    Article  CAS  Google Scholar 

  10. Ramachandran R, Chen TW, Chen SM, Baskar T, Kannan R, Elumalai P, Raja P, Jeyapragasam T, Dinakaran K, Gnana kumar GP. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg Chem Front. 2019;6(12):3418. https://doi.org/10.1039/C9QI00602H.

    Article  CAS  Google Scholar 

  11. Tang J, Zheng SB, Jiang SX, Li J, Guo T, Guo JH. Metal organic framework (ZIF-67)-derived Co nanoparticles/N-doped carbon nanotubes composites for electrochemical detecting of tert-butyl hydroquinone. Rare Met. 2021;40(2):478. https://doi.org/10.1007/s12598-020-01536-9.

    Article  CAS  Google Scholar 

  12. Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem. 2019;586:113415. https://doi.org/10.1016/j.ab.2019.113415.

    Article  CAS  Google Scholar 

  13. Coroş M, Pruneanu S, Stefan-van Staden RI. Review—recent progress in the graphene-based electrochemical sensors and biosensors. J Electrochem Soc. 2019;167(3):037528. https://doi.org/10.1149/2.0282003JES.

    Article  Google Scholar 

  14. Wu X, Ma P, Sun Y, Du F, Song D, Xu G. Application of MXene in electrochemical sensors: a review. Electroanalysis. 2021;33(8):1827. https://doi.org/10.1002/elan.202100192.

    Article  CAS  Google Scholar 

  15. Hu JY, Li Z, Zhai CY, Wang JF, Zeng LX, Zhu MS. Plasmonic photo-assisted electrochemical sensor for detection of trace lead ions based on Au anchored on two-dimensional g-C3N4/graphene nanosheets. Rare Met. 2021;40(7):1727. https://doi.org/10.1007/s12598-020-01659-z.

    Article  CAS  Google Scholar 

  16. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou HC. Recent advances in gas storage and separation using metal–organic frameworks. Mater Today. 2018;21(2):108. https://doi.org/10.1016/j.mattod.2017.07.006.

    Article  CAS  Google Scholar 

  17. Zhao Y, Liu J, Han ML, Yang GP, Ma LF, Wang YY. Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Rare Met. 2021;40(2):499. https://doi.org/10.1007/s12598-020-01597-w.

    Article  CAS  Google Scholar 

  18. Chen L, Xu Q. Metal-organic framework composites for catalysis. Matter. 2019;1(1):57. https://doi.org/10.1016/j.matt.2019.05.018.

    Article  Google Scholar 

  19. Li C, Zhao DH, Long HL, Li M. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction. Rare Met. 2021;40(10):2657. https://doi.org/10.1007/s12598-020-01694-w.

    Article  CAS  Google Scholar 

  20. Kumar P, Deep A, Kim KH. Metal organic frameworks for sensing applications. Trends Anal Chem. 2015;73:39. https://doi.org/10.1016/j.trac.2015.04.009.

    Article  CAS  Google Scholar 

  21. Zhou LJ, Zhang XX, Zhang WY. Sulfur dioxide sensing properties of MOF-derived ZnFe2O4 functionalized with reduced graphene oxide at room temperature. Rare Met. 2021;40(6):1604. https://doi.org/10.1007/s12598-020-01608-w.

    Article  CAS  Google Scholar 

  22. Ma T, Li H, Ma JG, Cheng P. Application of MOF-based materials in electrochemical sensing. Dalton Trans. 2020;49(47):17121. https://doi.org/10.1039/d0dt03388j.

    Article  CAS  Google Scholar 

  23. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. A review on metal-organic frameworks: synthesis and applications. Trends Anal Chem. 2019;118:401. https://doi.org/10.1016/j.trac.2019.06.007.

    Article  CAS  Google Scholar 

  24. Winarta J, Shan B, McIntyre SM, Ye L, Wang C, Liu J, Mu B. A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Cryst Growth Des. 2019;20(2):1347. https://doi.org/10.1021/acs.cgd.9b00955.

    Article  CAS  Google Scholar 

  25. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc. 2008;130(42):13850. https://doi.org/10.1021/ja8057953.

    Article  CAS  Google Scholar 

  26. Wu M, Zhang Q, Zhang Q, Wang H, Wang F, Liu J, Guo L, Song K. Research progress of UiO-66-based electrochemical biosensors. Front Chem. 2022;10:842894. https://doi.org/10.3389/fchem.2022.842894.

    Article  CAS  Google Scholar 

  27. Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin Chem Lett. 2021;32(7):2108. https://doi.org/10.1016/j.cclet.2020.11.051.

    Article  CAS  Google Scholar 

  28. Wang J, Xu Q, Liu J, Kong W, Shi L. Electrostatic self-assembly of MXene on ruthenium dioxide-modified carbon cloth for electrochemical detection of kaempferol. Small. 2023. https://doi.org/10.1002/smll.202301709.

    Article  Google Scholar 

  29. Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J. Electrochemical deposition of metal–organic framework films and their applications. J Mater Chem A. 2020;8(16):7569. https://doi.org/10.1016/j.jelechem.2023.117417.

    Article  CAS  Google Scholar 

  30. Zhu H, Liu H, Zhitomirsky I, Zhu S. Preparation of metal–organic framework films by electrophoretic deposition method. Mater Lett. 2015;142:19. https://doi.org/10.1016/j.matlet.2014.11.113.

    Article  CAS  Google Scholar 

  31. Rochefort D, Dabo P, Guay D, Sherwood PMA. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim Acta. 2003;48(28):4245. https://doi.org/10.1016/S0013-4686(03)00611-X.

    Article  CAS  Google Scholar 

  32. Wu Y, Xiao Y, Yuan H, Zhang Z, Shi S, Wei R, Gao L, Xiao G. Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Microporous Mesoporous Mater. 2021;310:110578. https://doi.org/10.1016/j.micromeso.2020.110578.

    Article  CAS  Google Scholar 

  33. Wang Y, Li L, Dai P, Yan L, Cao L, Gu X, Zhao X. Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. J Mater Chem A. 2017;5(42):22372. https://doi.org/10.1039/C7TA06060B.

    Article  CAS  Google Scholar 

  34. Wang H, Li X, Ruan Q, Tang J. Ru and RuOx decorated carbon nitride for efficient ammonia photosynthesis. Nanoscale. 2020;12(23):12329. https://doi.org/10.1039/D0NR02527E.

    Article  CAS  Google Scholar 

  35. Trabelsi SK, Tahar NB, Trabelsi B, Abdelhed R. Electrochemical oxidation of ferulic acid in aqueous solutions at gold oxide and lead dioxide electrodes. J Appl Electrochem. 2005;35(10):967. https://doi.org/10.1007/s10800-005-6723-0.

    Article  CAS  Google Scholar 

  36. Piovesan JV, Jost CL, Spinelli A. Electroanalytical determination of total phenolic compounds by square-wave voltammetry using a poly(vinylpyrrolidone)-modified carbon-paste electrode. Sens Actuators B: Chem. 2015;216:192. https://doi.org/10.1016/j.snb.2015.04.031.

    Article  CAS  Google Scholar 

  37. Wang XG, Li J, Fan YJ, Zhang X. Determination of ferulic acid in Chinese proprietary medicine based on a poly-glutamic acid film sensor. Russ J Electrochem. 2012;48(12):1160. https://doi.org/10.1134/S1023193512120142.

    Article  CAS  Google Scholar 

  38. Erady V, Mascarenhas RJ, Satpati AK, Detriche S, Mekhalif Z, Dalhalle J, Dhason A. Sensitive detection of Ferulic acid using multi-walled carbon nanotube decorated with silver nano-particles modified carbon paste electrode. J Electroanal Chem. 2017;806:22. https://doi.org/10.1016/j.jelechem.2017.10.045.

    Article  CAS  Google Scholar 

  39. Chen ZB, Jin HH, Yang ZG, He DP. Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors. Rare Met. 2023;42(4):1098. https://doi.org/10.1007/s12598-022-02129-4.

    Article  CAS  Google Scholar 

  40. Zha AY, Zha QB, Li Z, Zhang HM, Ma XF, Xie W, Zhu MS. Surfactant-enhanced electrochemical detection of bisphenol A based on Au on ZnO/reduced graphene oxide sensor. Rare Met. 2023;42(4):1274. https://doi.org/10.1007/s12598-022-02172-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFE0119300), Beijing Natural Science Foundation (No. 7202136) and CAMS Innovation Fund for Medical Sciences (CIFMS) (No. 2021-I2M-1-029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Xin Liu, Wei-Jun Kong or Lin-Chun Shi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, QB., Liu, JX. et al. Development of UiO-66-NH2 and RuO2 composite-modified carbon fiber for highly sensitive sensing of ferulic acid. Rare Met. 42, 3630–3637 (2023). https://doi.org/10.1007/s12598-023-02376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02376-z

Navigation