Skip to main content

Advertisement

Log in

Synthesis of FeOOH scaly hollow tubes based on Cu2O wire templates toward high-efficiency oxygen evolution reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

For catalytic materials, the characteristics of one-dimension and hollowness are the promotion factors for their full presentation of catalytic activity, and through a template-assisted method, both above superiorities can be fused simultaneously. Here, we proposed a novel strategy inspired by Pearson’s principle with Cu2O wires as templates, and prepared FeOOH hollow tubes, which covered by FeOOH scales. When applied as oxygen evolution reaction (OER) catalyst, the FeOOH scaly hollow tubes (FeOOH SHTs) showed outstanding catalytic activity with a low overpotential of 245 mV to drive a current density of 10 mA·cm−2, excellent kinetics manifesting as a low Tafel slope of 46.9 mV·dec−1, and robust stability. This work provides a new synthesis strategy for an ideal OER catalyst, FeOOH, with high inherent activity and enhances the feasibility to broaden the design ideas of transition metal-based catalysts.

Graphical abstract

摘要

一维中空微纳米催化材料由于其独特的结构特性, 因此具有优异的电化学性能。通过模板辅助方法, 我们可以实现一维中空微纳米结构的可控制备。在本文中, 我们受Pearson原理启发, 提出了一种获得一维中空微纳米催化材料的新策略。以Cu2O线为模板, 制备了FeOOH中空管 (FeOOH SHTs), 其表面呈鳞片状纳米结构, 进一步增大了比表面积。当用作析氧 (OER) 催化剂时, FeOOH中空管表现出优异的催化活性, 仅需要245 mV的低过电位, 就可以驱动10 mA·cm−2的电流密度; 另外其表现出优异的催化动力学, Tafel斜率仅为46.9 mV·dec−1; 并且催化稳定性持久。这项工作为制备具有高固有活性的理想OER催化剂-FeOOH 提供了一种新的策略, 并拓宽了过渡金属基催化剂的设计思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song F, Hu XL. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun. 2014;5:4477. https://doi.org/10.1038/ncomms5477.

    Article  CAS  Google Scholar 

  2. Shan AX, Teng XA, Zhang Yu, Zhang PF, Xu YY, Liu CR, Li H, Ye HY, Wang RM. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy. 2022;94:106913. https://doi.org/10.1016/j.nanoen.2021.106913.

    Article  CAS  Google Scholar 

  3. Feng YJ, Duan YY, Zou HJ, Ma JP, Zhou K, Zhou XY. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chin J Rare Met. 2021;45(5):551. https://doi.org/10.13373/j.cnki.cjrm.XY20090007.

    Article  Google Scholar 

  4. Zhang L, Zhu JW, Li X, Mu SC, Verpoort F, Xue JM, Kou ZK, Wang J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip Mater. 2022;1(1):51. https://doi.org/10.1002/idm2.12011.

    Article  Google Scholar 

  5. Lin C, Li JL, Li XP, Yang S, Luo W, Zhang YJ, Kim SH, Kim DH, Shinde SS, Li YF, Liu ZP, Jiang Z, Lee JH. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat Catal. 2021;4(12):1012. https://doi.org/10.1038/s41929-021-00703-0.

    Article  CAS  Google Scholar 

  6. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin J Rare Met. 2020;44(6):609. https://doi.org/10.13373/j.cnki.cjrm.xy18120018.

    Article  CAS  Google Scholar 

  7. Ma X, Zhang XY, Yang M, Xie JY, Lv RQ, Chai YM, Dong B. High-pressure microwave-assisted synthesis of WSx/Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction. Rare Met. 2021;40(5):1048. https://doi.org/10.1007/s12598-020-01704-x.

    Article  CAS  Google Scholar 

  8. Wang D, Chang YX, Li YR, Zhang SL, Xu SL. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021;40(11):3156. https://doi.org/10.1007/s12598-021-01733-0.

    Article  CAS  Google Scholar 

  9. Yu F, Zhou HQ, Huang YF, Sun JY, Qin F, Bao JM, Goddardiii WA, Chen S, Ren ZF. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat Commun. 2018;9:2551. https://doi.org/10.1038/s41467-018-04746-z.

    Article  CAS  Google Scholar 

  10. Li HY, Chen SM, Zhang Y, Zhang QH, Jia XF, Zhang Q, Gu L, Sun XM, Song L, Wang X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat Commun. 2018;9:2452. https://doi.org/10.1038/s41467-018-04888-0.

    Article  CAS  Google Scholar 

  11. Wang Y, Li XP, Zhang MM, Zhang JF, Chen ZL, Zheng XR, Tian ZL, Zhao NQ, Han XP, Zaghib KR, Wang YS, Deng YD, Hu WB. Highly active and durable single-atom Tungsten-doped NiS0.5Se0.5 nanosheet@NiS0.5Se0.5 nanorod heterostructures for water splitting. Adv Mater. 2022;34(13):2107053. https://doi.org/10.1002/adma.202107053.

    Article  CAS  Google Scholar 

  12. Wang C, Jin LJ, Shang HY, Xu H, Shiraishi Y, Du YK. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chin Chem Lett. 2021;32(7):2108. https://doi.org/10.1016/j.cclet.2020.11.051.

    Article  CAS  Google Scholar 

  13. Yin YC, Zhang XW, Sun CH. Transition-metal-doped Fe2O3 nanoparticles for oxygen evolution reaction. Prog Nat Sci-Mater. 2018;28(4):430. https://doi.org/10.1016/j.pnsc.2018.07.005.

    Article  CAS  Google Scholar 

  14. Pang Y, Zhu SL, Cui ZD, Liang YQ, Li ZY, Wu SL. Self-supported amorphous nanoporous nickel-cobalt phosphide catalyst for hydrogen evolution reaction. Prog Nat Sci-Mater. 2021;31(2):201. https://doi.org/10.1016/j.pnsc.2020.12.006.

    Article  CAS  Google Scholar 

  15. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44(8):2060. https://doi.org/10.1039/c4cs00470a.

    Article  CAS  Google Scholar 

  16. Hu F, Yu DS, Ye M, Wang H, Hao YA, Wang LQ, Li LL, Han XP, Peng SJ. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe–O–Cu bridges. Adv Energy Mater. 2022;12(19):2200067. https://doi.org/10.1002/aenm.202200067.

    Article  CAS  Google Scholar 

  17. Su H, Soldatov MA, Roldugin V, Liu QH. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience. 2022;2(1):102. https://doi.org/10.1016/j.esci.2021.12.007.

    Article  Google Scholar 

  18. Chen X, Wang QC, Chen YW, Xing HL, Li JZ, Zhu XJ, Ma LB, Li YT, Liu DM. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation. Adv Funct Mater. 2022;32(26):2112674. https://doi.org/10.1002/adfm.202112674.

    Article  CAS  Google Scholar 

  19. Huang ZF, Song JJ, Du YH, Xi SB, Dou S, Nsanzimana JMV, Wang C, Xu ZCJ, Wang X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat Energy. 2019;4(4):329. https://doi.org/10.1038/s41560-019-0355-9.

    Article  CAS  Google Scholar 

  20. Gao XR, Yu Y, Liang QR, Pang YJ, Miao LQ, Liu XM, Kou ZK, He JQ, Pennycook SJ, Mu SC, Wang J. Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting. Appl Catal B-Environ. 2020;270:118889. https://doi.org/10.1016/j.apcatb.2020.118889.

    Article  CAS  Google Scholar 

  21. Tang LN, Yang YL, Guo HQ, Wang Y, Wang MJ, Liu ZQ, Yang GM, Fu XZ, Luo Y, Jiang CX, Zhao YR, Shao ZP, Sun YF. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv Funct Mater. 2022;32(28):2112157. https://doi.org/10.1002/adfm.202112157.

    Article  CAS  Google Scholar 

  22. Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater. 2019;9(22):1900624. https://doi.org/10.1002/aenm.201900624.

    Article  CAS  Google Scholar 

  23. He YM, He QY, Wang LQ, Zhu C, Golani P, Handoko AD, Yu XC, Gao CT, Ding MN, Wang XW, Liu FC, Zeng QS, Yu P, Guo SS, Yakobson BI, Wang L, Seh ZW, Zhang ZH, Wu MH, Wang QJ, Zhang H, Liu Z. Self-gating in semiconductor electrocatalysis. Nat Mater. 2019;18(10):1098. https://doi.org/10.1038/s41563-019-0426-0.

    Article  CAS  Google Scholar 

  24. Song YH, Xu BS, Liao T, Guo JJ, Wu YC, Sun ZQ. Electronic structure tuning of 2D metal (hydr) oxides nanosheets for electrocatalysis. Small. 2020;17(9):2002240. https://doi.org/10.1002/smll.202002240.

    Article  CAS  Google Scholar 

  25. Fan GL, Li F, Evans DG, Duan X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev. 2014;43(20):7040. https://doi.org/10.1039/c4cs00160e.

    Article  CAS  Google Scholar 

  26. Rao Y, Wang Y, Ning H, Li P, Wu MB. Hydrotalcite-like Ni(OH)2 nanosheets in situ grown on nickel foam for overall water splitting. ACS Appl Mater Inter. 2016;8(49):33601. https://doi.org/10.1021/acsami.6b11023.

    Article  CAS  Google Scholar 

  27. Lv L, Yang ZX, Chen K, Wang CD, Xiong YJ. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv Energy Mater. 2019;9(17):1803358. https://doi.org/10.1002/aenm.201803358.

    Article  CAS  Google Scholar 

  28. Joo J, Kim T, Lee J, Choi S, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater. 2019;31(14):1806682. https://doi.org/10.1002/adma.201806682.

    Article  CAS  Google Scholar 

  29. Yang M, Xie JY, Yu WL, Cao YN, Dong B, Zhou YN, Wang FL, Li QZ, Zhou YL, Chai YM. Fe(Co)OOH dynamically stable interface based on self-sacrificial reconstruction for long-term electrochemical water oxidation. ACS Appl Mater Inter. 2021;13(15):17450. https://doi.org/10.1021/acsami.0c22620.

    Article  CAS  Google Scholar 

  30. Wang K, Du HF, He S, Liu L, Yang K, Sun JM, Liu YH, Du ZZ, Xie LH, Ai W, Huang W. Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: the key role of in-situ-generated γ-NiOOH. Adv Mater. 2021;33(11):2005587. https://doi.org/10.1002/adma.202005587.

    Article  CAS  Google Scholar 

  31. Deshpande NG, Kim DS, Ahn CH, Jung SH, Kim YB, Lee HS, Cho HK. β-like FeOOH nanoswords activated by Ni foam and encapsulated by rGO toward high current densities, durability, and efficient oxygen evolution. ACS Appl Mater Inter. 2021;13(16):18772. https://doi.org/10.1021/acsami.1c01428.

    Article  CAS  Google Scholar 

  32. Yu J, Wang J, Long X, Chen L, Cao Q, Wang J, Qiu C, Lim J, Yang SH. Formation of FeOOH nanosheets induces substitutional doping of CeO2−x with high-valence Ni for efficient water oxidation. Adv Energy Mater. 2021;11(4):2002731. https://doi.org/10.1002/aenm.202002731.

    Article  CAS  Google Scholar 

  33. Anantharaj S, Karthick K, Kundu S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: a review with insights on structure, activity and mechanism. Mater Today Energy. 2017;6:1. https://doi.org/10.1016/j.mtener.2017.07.016.

    Article  Google Scholar 

  34. Zhang YW, You LS, Liu QL, Li YL, Li TS, Xue ZQ, Li GQ. Interfacial charge transfer in a hierarchical Ni2P/FeOOH heterojunction facilitates electrocatalytic oxygen evolution. ACS Appl Mater Inter. 2021;13(2):2765. https://doi.org/10.1021/acsami.0c20204.

    Article  CAS  Google Scholar 

  35. Liang BR, Zhu SS, Wang JC, Liang XQ, Huang HF, Huang D, Zhou WZ, Xu SK, Guo J. Silicon-doped FeOOH nanorods@graphene sheets as high-capacity and durable anodes for lithium-ion batteries. Appl Surf Sci. 2021;550:149330. https://doi.org/10.1016/j.apsusc.2021.149330.

    Article  CAS  Google Scholar 

  36. Li X, Kou ZK, Xi SB, Zang WJ, Yang T, Zhang L, Wang J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy. 2020;78:105230. https://doi.org/10.1016/j.nanoen.2020.105230.

    Article  CAS  Google Scholar 

  37. Xia HC, Li KX, Zhang JN. Interfacial engineering of Ag nanodots/MoSe2 nanoflakes/Cu(OH)2 hybrid-electrode for lithium-ion battery. J Colloid Interface Sci. 2019;557:635. https://doi.org/10.1016/j.jcis.2019.09.067.

    Article  CAS  Google Scholar 

  38. Tang L, Yu L, Ma C, Song Y, Tu YC, Zhang YL, Bo X, Deng DH. Three-dimensional CoOOH nanoframes confining high-density Mo single atoms for large-current-density oxygen evolution. J Mater Chem A. 2022;10(11):6242. https://doi.org/10.1039/d1ta09729f.

    Article  CAS  Google Scholar 

  39. Lv YP, Duan SB, Zhu YC, Peng Y, Wang RM. Enhanced OER performances of Au@NiCo2S4 core-shell heterostructure. Nanomaterials. 2020;10(4):611. https://doi.org/10.3390/nano10040611.

    Article  CAS  Google Scholar 

  40. Lv YP, Duan SB, Zhu YC, Guo HZ, Wang RM. Interface control and catalytic performances of Au-NiSx heterostructures. Chem Eng J. 2020;382:122794. https://doi.org/10.1016/j.cej.2019.122794.

    Article  CAS  Google Scholar 

  41. Tong X, Zhan XX, Rawach D, Chen ZS, Zhang GX, Sun SH. Low-dimensional catalysts for oxygen reduction reaction. Prog Nat Sci-Mater. 2020;30(6):787. https://doi.org/10.1016/j.pnsc.2020.09.011.

    Article  CAS  Google Scholar 

  42. Li J, Zheng GF. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv Sci. 2017;4(3):1600380. https://doi.org/10.1002/advs.201600380.

    Article  CAS  Google Scholar 

  43. Gao F, Zhang YP, Wu ZY, You HM, Du YK. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coordin Chem Rev. 2021;436:213825. https://doi.org/10.1016/j.ccr.2021.213825.

    Article  CAS  Google Scholar 

  44. Li Y, Yang XY, Feng Y, Yuan ZY, Su BL. One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit Rev Solid State. 2012;37(1):1. https://doi.org/10.1080/10408436.2011.606512.

    Article  CAS  Google Scholar 

  45. Yu L, Yu XY, Lou XW. The design and synthesis of hollow micro-/nanostructures: present and future trends. Adv Mater. 2018;30(38):1800939. https://doi.org/10.1002/adma.201800939.

    Article  CAS  Google Scholar 

  46. Sun SD, Yang ZM. Cu2O-templated strategy for synthesis of definable hollow architectures. Chem Commun. 2014;50(56):7403. https://doi.org/10.1039/c4cc00304g.

    Article  CAS  Google Scholar 

  47. Sun SD, Zhang XJ, Yang Q, Liang SH, Zhang XZ, Yang ZM. Cuprous oxide (Cu2O) crystals with tailored architectures: a comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog Mater Sci. 2018;96:111. https://doi.org/10.1016/j.pmatsci.2018.03.006.

    Article  CAS  Google Scholar 

  48. Shang Y, Guo L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Adv Sci. 2015;2(10):1500140. https://doi.org/10.1002/advs.201500140.

    Article  CAS  Google Scholar 

  49. Sun SD. Recent advances in hybrid Cu2O-based heterogeneous nanostructures. Nanoscale. 2015;7(25):10850. https://doi.org/10.1039/c5nr02178b.

    Article  CAS  Google Scholar 

  50. Liu SQ, Wen HR, Ying G, Zhu YW, Fu XZ, Sun R, Wong CP. Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: a mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy. 2018;44:7. https://doi.org/10.1016/j.nanoen.2017.11.063.

    Article  CAS  Google Scholar 

  51. Sheng JL, Kang JH, Ye HQ, Xie JQ, Zhao B, Fu XZ, Yu Y, Sun R, Wong CP. Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. J Mater Chem A. 2018;6(9):3906. https://doi.org/10.1039/c7ta07879j.

    Article  CAS  Google Scholar 

  52. Guan X, Nai JW, Zhang YP, Wang PX, Yang J, Zheng LR, Zhang J, Guo L. CoO hollow cube/reduced graphene oxide composites with enhanced lithium storage capability. Chem Mater. 2014;26(20):5958. https://doi.org/10.1021/cm502690u.

    Article  CAS  Google Scholar 

  53. Qiu BC, Zhu QH, Du MM, Fan LG, Xing MY, Zhang JL. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew Chem Int Edit. 2017;56(10):2684. https://doi.org/10.1002/anie.201612551.

    Article  CAS  Google Scholar 

  54. Yang LL, Zhang B, Ma WJ, Du YC, Han XJ, Xu P. Pearson’s principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution. Mater Chem Front. 2018;2(8):1523. https://doi.org/10.1039/c8qm00170g.

    Article  CAS  Google Scholar 

  55. Nai JW, Wang SQ, Bai Y, Guo L. Amorphous Ni(OH)2 nanoboxes: fast fabrication and enhanced sensing for glucose. Small. 2013;9(18):3147. https://doi.org/10.1002/smll.201203076.

    Article  CAS  Google Scholar 

  56. Tan YW, Xue XY, Peng Q, Zhao H, Wang TH, Li YD. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett. 2007;7(12):3723. https://doi.org/10.1021/nl0721259.

    Article  CAS  Google Scholar 

  57. Deng SZ, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Mhaisalkar S, Wei J, Sow CH. Reduced graphene oxide conjugated Cu2O Nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc. 2012;134(10):4905. https://doi.org/10.1021/ja211683m.

    Article  CAS  Google Scholar 

  58. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science. 2007;316(5825):732. https://doi.org/10.1126/science.1140484.

    Article  CAS  Google Scholar 

  59. Quan ZW, Wang YX, Fang JY. High-index faceted noble metal nanocrystals. Accounts Chem Res. 2013;46(2):191. https://doi.org/10.1021/ar200293n.

    Article  CAS  Google Scholar 

  60. Feng LL, Yu GT, Wu YY, Li GD, Li H, Sun YH, Asefa T, Chen W, Zou XX. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc. 2015;137(44):14023. https://doi.org/10.1021/jacs.5b08186.

    Article  CAS  Google Scholar 

  61. Gu Y, Wang XL, Humayun M, Li LF, Sun HC, Xu XF, Xue XY, Habibi-Yangjeh A, Temst K, Wang CD. Spin regulation on (Co, Ni)Se2/C@FeOOH hollow nanocage accelerates water oxidation. Chin J Catal. 2022;43(3):839. https://doi.org/10.1016/S1872-2067(21)63922-0.

    Article  CAS  Google Scholar 

  62. Guan JL, Li CF, Zhao JW, Yang YZ, Zhou W, Wang Y, Li GR. FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting. Appl Catal B-Environ. 2020;269:118600. https://doi.org/10.1016/j.apcatb.2020.118600.

    Article  CAS  Google Scholar 

  63. Yang YY, Yang JY, Liang PJ, Zhang ZY, Li ZM, Hu ZA. V2O3/FeOOH with rich heterogeneous interfaces on Ni foam for efficient oxygen evolution reaction. Catal Commun. 2022;162:106393. https://doi.org/10.1016/j.catcom.2021.106393.

    Article  CAS  Google Scholar 

  64. Chen JL, Shen BS, Song YY, Liu J, Ye Q, Mao M, Chen YL. FeOOH decorated CoP porous nanofiber for enhanced oxygen evolution activity. Chem Eng J. 2022;428:131130. https://doi.org/10.1016/j.cej.2021.131130.

    Article  CAS  Google Scholar 

  65. Yang H, Gong LQ, Wang HM, Dong CL, Wang JL, Qi K, Liu HF, Guo XP, Xia BY. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat Commun. 2020;11(1):5075. https://doi.org/10.1038/s41467-020-18891-x.

    Article  CAS  Google Scholar 

  66. Liu B, Wang Y, Peng HQ, Yang RO, Jiang Z, Zhou XT, Lee CS, Zhao HJ, Zhang WJ. Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv Mater. 2018;30(36):1803144. https://doi.org/10.1002/adma.201803144.

    Article  CAS  Google Scholar 

  67. Taniguchi A, Kubota Y, Matsushita N, Ishii K, Nguyen TKN, Uchikoshi T, Suzuki Y. Sequenced successive ionic layer adsorption and reaction for rational design of Ni(OH)2/FeOOH heterostructures with tailored catalytic properties. ACS Appl Energ Mater. 2021;4(8):8252. https://doi.org/10.1021/acsaem.1c01505.

    Article  CAS  Google Scholar 

  68. Zhang Q, Sun MS, Yao MQ, Zhu J, Yang SD, Chen L, Sun BL, Zhang JC, Hu WC, Zhao P. Interfacial engineering of an FeOOH@Co3O4 heterojunction for efficient overall water splitting and electrocatalytic urea oxidation. J Colloid Interface Sci. 2022;623:617. https://doi.org/10.1016/j.jcis.2022.05.070.

    Article  CAS  Google Scholar 

  69. Gao JY, Ma HQ, Zhang LF, Luo XY, Yu LQ. Interface engineering of Ni3Se2@FeOOH heterostructure nanoforests for highly-efficient overall water splitting. J Alloy Compd. 2022;893:162244. https://doi.org/10.1016/j.jallcom.2021.162244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFA0703700), the National Natural Science Foundation of China (Nos. 12004031, 12034002 and 51971025), Beijing Natural Science Foundation (No. 2212034), Foshan Talents Special Foundation (No. BKBS202003), the Scientific and Technological Innovation Foundation of Foshan (No. BK22BE005) and Foshan Science and Technology Innovation Project (No. 2018IT100363).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Ming Wang, Woon-Ming Lau or Ai-Xian Shan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10021 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Teng, XA., Ma, ZQ. et al. Synthesis of FeOOH scaly hollow tubes based on Cu2O wire templates toward high-efficiency oxygen evolution reaction. Rare Met. 42, 1836–1846 (2023). https://doi.org/10.1007/s12598-023-02284-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02284-2

Keywords

Navigation