Skip to main content

Advertisement

Log in

Vertically aligned W(Mo)S2/N-W(Mo)C-based light-assisted electrocatalysis for hydrogen evolution in acidic solutions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The development of non-noble-metal hydrogen evolution electrocatalysts holds great promises for a sustainable energy system. Here, a hybrid W(Mo)S2/N-W(Mo)C nanosheet with array structures was reported for an efficient light-assisted hydrogen evolution electrocatalysts in acidic solutions. The resulting vertically aligned W(Mo)S2/N-W(Mo)C was supported on a conductive carbon fiber paper, which can be produced through annealing W(Mo)S2 nanosheets by simultaneous carbonization and N-doping in Ar/H2 atmosphere. This optimized WS2/N-WC and MoS2/N-MoC electrode exhibits remarkable light-assisted electrocatalysis activity with overpotentials of 0.120 and 0.122 V at 10 mA·cm−1 in acidic solutions, respectively. Such high hydrogen evolution activities should be attributed to the electrocatalytic synergistic effects of the abundant active sites existing in different phase boundaries and the absorption for ultraviolet–visible light. This study shows that synthesis of low-cost and highly active W(Mo)S2-based hydrogen evolution electrocatalyst opens up a route toward the development of scalable production of hydrogen fuels.

Graphical abstract

摘要

非贵金属催化剂的开发为能源的可持续发展带来了希望。本文报道了一种可用于酸性介质中高效析氢的垂直 W(Mo)S2/N-W(Mo)C 纳米片阵列,该阵列垂直生长在碳布上,通过在Ar/H2 气氛中同时碳化和氮掺杂W(Mo)S2 纳 米片来获得。优化后的WS2/N-WC 和MoS2/N-MoC 电极在酸性介质中具有显著提高的光辅助电催化析氢活性, 获得10 mA·cm‒1 的电流密度时需要的过电位仅为0.120 和0.122 V。这种显著提高的析氢催化活性源于相边界中 丰富的催化活性位点以及异质结构对紫外可见光的吸收,两者共同作用产生了电催化协同效应。本文合成的低成 本和高活性的W(Mo)S2 基析氢催化剂为开发氢燃料电池开辟了一条新道路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zou XX, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148. https://doi.org/10.1039/C4CS00448E.

    Article  CAS  Google Scholar 

  2. Han NN, Yang KR, Lu ZY, Li YJ, Xu WW, Gao TF, Cai Z, Zhang Y, Batista VS, Liu W, Sun XM. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat Commun. 2018;9(1):1. https://doi.org/10.1038/s41467-018-03429-z.

    Article  CAS  Google Scholar 

  3. Yang ZX, Li XG, Yao QL, Lu ZH, Zhang N, Xia J, Yang K, Wang YQ, Zhang K, Liu HZ, Zhang LT, Lin HJ, Zhou QJ, Wang F, Yu ZM, Ma JM. 2022 roadmap on hydrogen energy from production to utilizations. Rare Met. 2022;41(10):3251. https://doi.org/10.1007/s12598-022-02029-7.

    Article  CAS  Google Scholar 

  4. Hoa VH, Tran DT, Prabhakaran S, Kim DH, Hameed N, Wang H, Kim NH, Lee JH. Ruthenium single atoms implanted continuous MoS2-Mo2C heterostructure for high-performance and stable water splitting. Nano Energy. 2021;88:106277. https://doi.org/10.1016/j.nanoen.2021.106277.

    Article  CAS  Google Scholar 

  5. Zhang S, Zhang X, Rui Y, Wang RH, Li XJ. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy Environ. 2021;6(4):458. https://doi.org/10.1016/j.gee.2020.10.013.

    Article  CAS  Google Scholar 

  6. Pan J, Yu SW, Jing ZW, Zhou QT, Dong YF, Lou XD, Xia F. Electrocatalytic hydrogen evolution reaction related to nanochannel materials. Small Struct. 2021;2(10):2100076. https://doi.org/10.1002/sstr.202100076.

    Article  CAS  Google Scholar 

  7. Feng YJ, Duan YY, Zou HJ, Ma JP, Zhou K, Zhou XY. Research status of single atom catalyst in hydrogen production by photocatalytic water splitting. Chin J Rare Met. 2021;45(5):551. https://doi.org/10.13373/j.cnki.cjrm.XY20090007.

    Article  Google Scholar 

  8. Liu W, Hu EY, Jiang H, Xiang YJ, Weng Z, Li M, Fan Q, Yu XQ, Altman EI, Wang HL. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat Commun. 2016;7(1):10771. https://doi.org/10.1038/ncomms10771.

    Article  CAS  Google Scholar 

  9. Gu JW, Peng Y, Zhou T, Ma J, Pang H, Yamauchi Y. Porphyrin-based framework materials for energy conversion. Nano Res Energy. 2022;1(1):e9120009. https://doi.org/10.26599/NRE.2022.9120009.

    Article  Google Scholar 

  10. Upadhyay S, Pandey OP. One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction. Int J Hydrogen Energ. 2020;45(51):27114. https://doi.org/10.1016/j.ijhydene.2020.07.069.

    Article  CAS  Google Scholar 

  11. Zhou J, Wang FF, Wang HQ, Hu SX, Zhou WJ, Liu H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2022. https://doi.org/10.1007/s12274-022-4901-6.

    Article  Google Scholar 

  12. Meng LX, Li L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res Energy. 2022;1:e9120020. https://doi.org/10.26599/NRE.2022.9120020.

    Article  Google Scholar 

  13. Xie LB, Wang LL, Zhao WW, Liu SJ, Huang W, Zhao Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat Commun. 2021;12(1):5070. https://doi.org/10.1038/s41467-021-25381-1.

    Article  CAS  Google Scholar 

  14. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  15. Ge RY, Huo JJ, Liao T, Liu Y, Zhu MY, Li Y, Zhang JJ, Li WX. Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction. Appl Catal B. 2020;260:118196. https://doi.org/10.1016/j.apcatb.2019.118196.

    Article  CAS  Google Scholar 

  16. Han WQ, Liu ZH, Pan YB, Guo GN, Zou JX, Xia Y, Peng ZM, Li W, Dong AG. Designing champion nanostructures of tungsten dichalcogenides for electrocatalytic hydrogen evolution. Adv Mater. 2020;32(28):2002584. https://doi.org/10.1002/adma.202002584.

    Article  CAS  Google Scholar 

  17. Cheng Y, Pang KL, Wu X, Zhang ZG, Xu XH, Ren JK, Huang W, Song R. In situ hydrothermal synthesis MoS2/Guar gum carbon nanoflowers as advanced electrocatalysts for electrocatalytic hydrogen evolution. ACS Sustain Chem Eng. 2018;6(7):8688. https://doi.org/10.1021/acssuschemeng.8b00994.

    Article  CAS  Google Scholar 

  18. Yu YF, Huang SY, Li YP, Steinmann SN, Yang WT, Cao LY. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014;14(2):553. https://doi.org/10.1021/nl403620g.

    Article  CAS  Google Scholar 

  19. Zhou Y, Zhang J, Song EH, Lin JH, Zhou JD, Suenaga K, Zhou W, Liu Z, Liu JJ, Lou J, Fan HJ. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat Commun. 2020;11(1):2253. https://doi.org/10.1038/s41467-020-16111-0.

    Article  CAS  Google Scholar 

  20. He YM, Tang PY, Hu ZL, He QY, Zhu C, Wang LQ, Zeng QS, Golani P, Gao GH, Fu W, Huang ZQ, Gao CT, Xia J, Wang XL, Wang XW, Zhu C, Ramasse QM, Zhang A, An BX, Zhang YZ, Marti-Sanchez S, Morante JR, Wang L, Tay BK, Yakobson BI, Trampert A, Zhang H, Wu MZ, Wang QJ, Arbiol J, Liu Z. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat Commun. 2020;11(1):57. https://doi.org/10.1038/s41467-019-13631-2.

    Article  CAS  Google Scholar 

  21. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech. 2012;7(11):699. https://doi.org/10.1038/nnano.2012.193.

    Article  CAS  Google Scholar 

  22. Tan JY, Li SS, Liu BL, Cheng HM. Structure, preparation, and applications of 2D material-based metal-semiconductor heterostructures. Small Struct. 2021;2(1):2000093. https://doi.org/10.1002/sstr.202000093.

    Article  CAS  Google Scholar 

  23. Yang YQ, Zhang K, Lin HL, Li X, Chan HC, Yang LC, Gao QS. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017;7(4):2357. https://doi.org/10.1021/acscatal.6b03192.

    Article  CAS  Google Scholar 

  24. Luo YT, Li X, Cai XK, Zou XL, Kang FY, Cheng HM, Liu BL. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano. 2018;12(5):4565. https://doi.org/10.1021/acsnano.8b00942.

    Article  CAS  Google Scholar 

  25. Fu Q, Han JC, Wang XJ, Xu P, Yao T, Zhong J, Zhong WW, Liu SW, Gao TL, Zhang ZH, Xu LL, Song B. 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv Mater. 2021;33(6):1907818. https://doi.org/10.1002/adma.201907818.

    Article  CAS  Google Scholar 

  26. Wang HT, Tsai C, Kong DS, Chan KR, Abild-Pedersen F, Nørskov JK, Cui Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015;8(2):566. https://doi.org/10.1007/s12274-014-0677-7.

    Article  CAS  Google Scholar 

  27. Ma XY, Li JQ, An CH, Feng J, Chi YH, Liu JX, Zhang J, Sun YG. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 2016;9(8):2284. https://doi.org/10.1007/s12274-016-1115-9.

    Article  CAS  Google Scholar 

  28. Peng SJ, Li LL, Zhang J, Tan TL, Zhang TR, Ji DX, Han XP, Cheng FY, Ramakrishna S. Engineering Co9S8/WS2 array films as bifunctional electrocatalysts for efficient water splitting. J Mater Chem A. 2017;5(44):23361. https://doi.org/10.1039/c7ta08518d.

    Article  CAS  Google Scholar 

  29. Liu LC, Zhang C, Chen M, Guan GX, Qian X. Co9S8-Ni3S2@WS2 hierarchical yolk-shelled nanospheres as superior Pt-free catalytic materials for highly efficient dye-sensitized solar cells. Appl Surf Sci. 2022;573:151606. https://doi.org/10.1016/j.apsusc.2021.151606.

    Article  CAS  Google Scholar 

  30. Wang S, Zhang D, Li B, Zhang C, Du ZG, Yin HM, Bi XF, Yang SB. Ultrastable in-plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv Energy Mater. 2018;8(25):1801345. https://doi.org/10.1002/aenm.201801345.

    Article  CAS  Google Scholar 

  31. Chang K, Hai X, Pang H, Zhang HB, Shi L, Liu GG, Liu HM, Zhao GX, Li M, Ye JH. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv Mater. 2016;28(45):10033. https://doi.org/10.1002/adma.201603765.

    Article  CAS  Google Scholar 

  32. Liu Q, Fang Q, Chu WS, Wan YY, Li XL, Xu WY, Habib M, Tao S, Zhou Y, Liu DB, Xiang T, Khalil A, Wu XJ, Chhowalla M, Ajayan PM, Song L. Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem Mater. 2017;29(11):4738. https://doi.org/10.1021/acs.chemmater.7b00446.

    Article  CAS  Google Scholar 

  33. Li L, Qin ZD, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D, Chhowalla M, Voiry D. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano. 2019;13(6):6824. https://doi.org/10.1021/acsnano.9b01583.

    Article  CAS  Google Scholar 

  34. Wang X, Zhang YW, Si HN, Zhang QH, Wu J, Gao L, Wei XF, Sun Y, Liao QL, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J Am Chem Soc. 2020;142(9):4298. https://doi.org/10.1021/jacs.9b12113.

    Article  CAS  Google Scholar 

  35. Sarma PV, Kayal A, Sharma CH, Thalakulam M, Mitra J, Shaijumon MM. Electrocatalysis on edge-rich spiral WS2 for hydrogen evolution. ACS Nano. 2019;13(9):10448. https://doi.org/10.1021/acsnano.9b04250.

    Article  CAS  Google Scholar 

  36. Hong W, Meza E, Li CW. Controlling the Co–S coordination environment in Co-doped WS2 nanosheets for electrochemical oxygen reduction. J Mater Chem A. 2021;9(35):19865. https://doi.org/10.1039/d1ta02468j.

    Article  CAS  Google Scholar 

  37. Xiong QZ, Zhang X, Wang HJ, Liu GQ, Wang GZ, Zhang HM, Zhao HJ. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem Commun. 2018;54(31):3859. https://doi.org/10.1039/C8CC00766G.

    Article  CAS  Google Scholar 

  38. Zhao ZY, Li FL, Shao Q, Huang XQ, Lang JP. Co-modified MoS2 hybrids as superior bifunctional electrocatalysts for water splitting reactions: integrating multiple active components in one. Adv Mater Interfaces. 2019;6(11):1900372. https://doi.org/10.1002/admi.201900372.

    Article  CAS  Google Scholar 

  39. Xiong QZ, Wang Y, Liu PF, Zheng LR, Wang GZ, Yang HG, Wong PK, Zhang HM, Zhao HJ. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv Mater. 2018;30(29):1801450. https://doi.org/10.1002/adma.201801450.

    Article  CAS  Google Scholar 

  40. Wang HQ, Xu JH, Zhang QB, Hu SX, Zhou WJ, Liu H, Wang X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 Nanosheet/Co9S8 nanoparticle with Pt-like activities for robust All-pH hydrogen evolution. Adv Funct Mater. 2022;32(17):2112362. https://doi.org/10.1002/adfm.202112362.

    Article  CAS  Google Scholar 

  41. Sun T, Wang J, Chi X, Lin YX, Chen ZX, Ling X, Qiu CT, Xu YS, Song L, Chen W, Su CL. Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 2018;8(8):7585. https://doi.org/10.1021/acscatal.8b00783.

    Article  CAS  Google Scholar 

  42. Nguyen TP, Kim SY, Lee TH, Jang HW, Le QV, Kim IT. Facile synthesis of W2C@WS2 alloy nanoflowers and their hydrogen generation performance. Appl Sur Sci. 2020;504:144389. https://doi.org/10.1016/j.apsusc.2019.144389.

    Article  CAS  Google Scholar 

  43. Diao JX, Qiu Y, Liu SQ, Wang WT, Chen K, Li HL, Yuan WY, Qu YT, Guo XH. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv Mater. 2020;32(7):1905679. https://doi.org/10.1002/adma.201905679.

    Article  CAS  Google Scholar 

  44. Kou ZK, Wang TT, Wu HJ, Zheng LR, Mu SC, Pan ZH, Lyu ZY, Zang WJ, Pennycook SJ, Wang J. Twinned tungsten carbonitride nanocrystals boost hydrogen evolution activity and stability. Small. 2019;15(19):e1900248. https://doi.org/10.1002/smll.201900248.

    Article  CAS  Google Scholar 

  45. Song T, Zhang X, Yang P. Interface engineering of W2C/W2N co-catalyst on g-C3N4 nanosheets for boosted H2 evolution and 4-nitrophenol removal. Environ Sci Nano. 2022;9(5):1888. https://doi.org/10.1039/D2EN00104G.

    Article  CAS  Google Scholar 

  46. Xie Y, Zhang Y, Zhang MR, Zhang Y, Liu JQ, Zhou Q, Wang WF, Cui JW, Wang Y, Chen Y, Wang ZM, Xie T, Wu YC. Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance. Int J Hydrogen Energ. 2017;42(41):25924. https://doi.org/10.1016/j.ijhydene.2017.08.126.

    Article  CAS  Google Scholar 

  47. Cao YY, Wang LL, Chen MY, Xu XH. W2N/WC composite nanofibers as an efficient electrocatalyst for photoelectrochemical hydrogen evolution. RSC Adv. 2021;11(33):20285. https://doi.org/10.1039/D1RA02849A.

    Article  CAS  Google Scholar 

  48. Zhao ZH, Qin F, Kasiraju S, Xie LX, Alam MK, Chen S, Wang DZ, Ren ZF, Wang ZM, Grabow LC, Bao JM. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 2017;7(10):7312. https://doi.org/10.1021/acscatal.7b02885.

    Article  CAS  Google Scholar 

  49. Yang SS, Wang YW, Zhang HJ, Zhang Y, Liu L, Fang L, Yang X, Gu X, Wang Y. Unique three-dimensional Mo2C@MoS2 heterojunction nanostructure with S vacancies as outstanding all-pH range electrocatalyst for hydrogen evolution. J Catal. 2019;371:20. https://doi.org/10.1016/j.jcat.2019.01.020.

    Article  CAS  Google Scholar 

  50. Zhang X, Yang P, Jiang SP. Ni diffusion in vertical growth of MoS2 nanosheets on carbon nanotubes towards highly efficient hydrogen evolution. Carbon. 2021;175:176. https://doi.org/10.1016/j.carbon.2021.01.010.

    Article  CAS  Google Scholar 

  51. Chi J, Yu HM, Qin BW, Fu L, Jia J, Yi BB, Shao ZG. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction. ACS Appl Mater Interfaces. 2017;9(1):464. https://doi.org/10.1021/acsami.6b13360.

    Article  CAS  Google Scholar 

  52. Xie JF, Xin JP, Cui GW, Zhang XX, Zhou LJ, Wang YL, Liu WW, Wang CH, Ning M, Xia XY, Zhao YQ, Tang B. Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction. Inorg Chem Front. 2016;3(9):1160. https://doi.org/10.1039/C6QI00198J/.

    Article  CAS  Google Scholar 

  53. Li Y, Wu X, Zhang HB, Zhang J. Interface designing over WS2/W2C for enhanced hydrogen evolution catalysis. ACS Appl Energ Mater. 2018;1(7):3377. https://doi.org/10.1021/acsaem.8b00550.

    Article  CAS  Google Scholar 

  54. Yang X, Wärnå JPA, Wang J, Zhang P, Luo W, Ahuja R. Enhanced overall water splitting under visible light of MoSSe/WSSe heterojunction by lateral interfacial engineering. J Catal. 2021;404:18. https://doi.org/10.1016/j.jcat.2021.09.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52202340), China Postdoctoral Science Foundation (No. 2021M691365), the Applied Basic Research Project of Shanxi Province (No. 20210302124425), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2021L266) and the Graduate Science and Technology Innovation Project Foundation of Shanxi Normal University (No. 2021XSY030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan-Fang Wang or Xiao-Hong Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4581 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LF., Yang, RX., Fu, JZ. et al. Vertically aligned W(Mo)S2/N-W(Mo)C-based light-assisted electrocatalysis for hydrogen evolution in acidic solutions. Rare Met. 42, 1535–1544 (2023). https://doi.org/10.1007/s12598-022-02250-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02250-4

Keywords

Navigation