Skip to main content

Advertisement

Log in

High-rate performance and super long-cycle stability of Na3V2(PO4)3 cathode material coated by diatomic doped carbon

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Na3V2(PO4)3 is considered as one of the most promising cathodes for sodium ion batteries due to its excellent thermal stability, long cycle life and high energy density. However, the inferior intrinsic electronic conductivity which brings about the poor rate capability and cycling performance hinders its commercial application. Herein, the S–N co-doped carbon-coated Na3V2(PO4)3 (NVP@SNC) has been synthesized to resolve the problem. The prepared NVP@SNC forms a hierarchical structure assembled with nanosheets, which is in favor of the electrolyte infiltration and shortening the Na+ transmission distance. Numerous lattice defects can be induced in carbon layer by the co-doped elements (S–N), which reduce the Na+ diffusion energy barriers and provide adequate Na+ migration channels, thus jointly boosting the Na+ diffusion coefficient. Consequently, the NVP@SNC cathode shows a high reversible capacity with outstanding rate performance and super long-cycle stability. When discharged at 2.0C, it delivers the capacity near to the theoretical value with a capacity retention of 88.7% after 400 cycles. Even if the current is as high as 50.0C, a high capacity of 58.6 mAh·g−1 has been released, and 41.4 mAh·g−1 has been remained after the super long cycling of 4000 circles. This study is expected to supply a new thought of developing high-performance cathodes by diatomic doping for sodium ion battery.

Graphical abstract

摘要

Na3V2(PO4)3 由于其优异的热稳定性、长循环寿命和高能量密度,被认为在钠离子电池正极材料应用方面具有良 好的发展前景。然而,其电子导电率较低,导致电极倍率性能和循环性能较差,阻碍了商业化应用。针对该问题, 本文制备了由纳米片组装而成的硫-氮共掺杂碳包覆的Na3V2(PO4)3 (缩写为NVP@SNC),该材料不仅具有良好 的电子导电性,而且孔隙丰富,有利于电解质的浸润并缩短Na+传输距离。此外,硫-氮共掺杂可在碳层中诱导产 生晶格缺陷,从而降低Na+扩散能垒,并增加Na+迁移通道,从而提高Na+扩散系数。因此,NVP@SNC 作为钠 离子电池正极材料不仅具有很高的可逆容量,并且展现了优异的倍率性能和超长的循环稳定性。在2.0C 倍率放 电时,其放电容量接近理论值,400 圈循环后容量保持为88.7%。即使在电流高达50.0C 时,初始放电容量也有 58.6 mAh·g‒1,经过4000 圈的超长循环后仍保留有41.4 mAh·g‒1,容量保持率为70.6%。由此可见,本文研究 的双原子掺杂碳包覆方案为开发高性能钠离子电池正极材料提供了新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Braga MH, Grundish NS, Murchison AJ, Goodenough JB. Alternative strategy for a safe rechargeable battery. Energ Environ Sci. 2017;10(1):331. https://doi.org/10.1039/c6ee02888h.

    Article  CAS  Google Scholar 

  2. Wang L, Lu B, Wang S, Cheng W, Zhao Y, Zhang J, Sun X. Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. J Mater Chem A. 2019;7(18):11117. https://doi.org/10.1039/c8ta12540f.

    Article  CAS  Google Scholar 

  3. Xiao B, Sun X. Surface and subsurface reactions of lithium transition metal oxide cathode materials: an overview of the fundamental origins and remedying approaches. Adv Energy Mater. 2018;8(29):1802057. https://doi.org/10.1002/aenm.201802057.

    Article  CAS  Google Scholar 

  4. Tang F, Gao J, Ruan Q, Wu X, Wu X, Zhang T, Liu Z, Xiang Y, He Z, Wu X. Graphene-wrapped MnO/C composites by MOFs-derived as cathode material for aqueous zinc ion batteries. Electrochim Acta. 2020;353:136570. https://doi.org/10.1016/j.electacta.2020.136570.

    Article  CAS  Google Scholar 

  5. Li B, Xue J, Han C, Liu N, Ma K, Zhang R, Wu X, Dai L, Wang L, He Z. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci. 2021;599:467. https://doi.org/10.1016/j.jcis.2021.04.113.

    Article  CAS  Google Scholar 

  6. Liao J, Zhang X, Zhang Q, Hu Q, Li Y, Du Y, Xu J, Gu L, Zhou X. Synthesis of KVPO4F/carbon porous single crystalline nanoplates for high-rate potassium-ion batteries. Nano Lett. 2022;22(12):4933. https://doi.org/10.1021/acs.nanolett.2c01604.

    Article  CAS  Google Scholar 

  7. Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energ Environ Sci. 2018;11(10):2696. https://doi.org/10.1039/c8ee01419a.

    Article  Google Scholar 

  8. Liao J, Chen C, Hu Q, Du Y, He Y, Xu Y, Zhang Z, Zhou X. A low-strain phosphate cathode for high-rate and ultralong cycle-life potassium-ion batteries. Angew Chem Int Ed Engl. 2021;60(48):25575. https://doi.org/10.1002/anie.202112183.

    Article  CAS  Google Scholar 

  9. Cui J, Wu X, Yang S, Li C, Tang F, Chen J, Chen Y, Xiang Y, Wu X, He Z. Cryptomelane-type KMn8O16 as potential cathode material - for aqueous zinc ion battery. Front Chem. 2018;6:352. https://doi.org/10.3389/fchem.2018.00352.

    Article  CAS  Google Scholar 

  10. Tang F, He T, Zhang H, Wu X, Li Y, Long F, Xiang Y, Zhu L, Wu J, Wu X. The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery. J Electroanal Chem. 2020;873:114368. https://doi.org/10.1016/j.jelechem.2020.114368.

    Article  CAS  Google Scholar 

  11. Yang S, Zhang M, Wu X, Wu X, Zeng F, Li Y, Duan S, Fan D, Yang Y, Wu X. The excellent electrochemical performances of ZnMn2O4/Mn2O3: the composite cathode material for potential aqueous zinc ion batteries. J Electroanal Chem. 2019;832:69. https://doi.org/10.1016/j.jelechem.2018.10.051.

    Article  CAS  Google Scholar 

  12. Zhang X, Rui X, Chen D, Tan H, Yang D, Huang S, Yu Y. Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. Nanoscale. 2019;11(6):2556. https://doi.org/10.1039/c8nr09391a.

    Article  CAS  Google Scholar 

  13. Sun W, Tang X, Wang Y. Multi-metal–organic frameworks and their derived materials for Li/Na-ion batteries. Electrochem Energ Rev. 2019;3(1):127. https://doi.org/10.1007/s41918-019-00056-0.

    Article  CAS  Google Scholar 

  14. Cao X, Zhou J, Pan A, Liang S. Recent advances in phosphate cathode materials for sodium-ion batteries. Acta Phys -Chim Sin. 2020;36(5):1905018. https://doi.org/10.3866/PKU.WHXB201905018.

    Article  CAS  Google Scholar 

  15. Pan W, Guang W, Jiang Y. Research advances in polyanion-type cathodes for sodium-ion batteries. Acta Phys -Chim Sin. 2020;36(5):1905017. https://doi.org/10.3866/PKU.WHXB201905017.

    Article  CAS  Google Scholar 

  16. Zhu L, Yang XX, Xiang YH, Kong P, Wu XW. Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Met. 2021;40(6):1383. https://doi.org/10.1007/s12598-020-01555-6.

    Article  CAS  Google Scholar 

  17. Shen Y, Wang X, Hu H, Jiang M, Bai Y, Yang X, Shu H. Sheet-like structure FeF3/graphene composite as novel cathode material for Na ion batteries. RSC Adv. 2015;5(48):38277. https://doi.org/10.1039/c5ra02235e.

    Article  CAS  Google Scholar 

  18. Liu C, Zhang ZX, Tan R, Deng JW, Li QH, Duan XC. Design of cross-welded Na3V2(PO4)3/C nanofibrous mats and their application in sodium-ion batteries. Rare Met. 2022;41(3):806. https://doi.org/10.1007/s12598-021-01825-x.

    Article  CAS  Google Scholar 

  19. Li H, Liu S, Yuan T, Wang B, Sheng P, Xu L, Zhao G, Bai H, Chen X, Cao Y, Chen Z. Influence of NaOH concentration on sodium storage performance of Na0.44MnO2. Acta Physico-Chimica Sinica. 2021;37(3):1907049. https://doi.org/10.3866/PKU.WHXB201907049.

    Article  CAS  Google Scholar 

  20. Sawicki M, Ortiz AL, Luo M, Shaw LL. Structural-defect-controlled electrochemical performance of sodium ion batteries with NaCrO2 cathodes. ChemElectroChem. 2017;4(12):3222. https://doi.org/10.1002/celc.201700764.

    Article  CAS  Google Scholar 

  21. Zheng L, Wang H, Luo M, Wang G, Wang Z, Ouyang C. Na2MnO3 as cathode materials for Na ion batteries: from first-principles investigations. Solid State Ionics. 2018;320:210. https://doi.org/10.1016/j.ssi.2018.02.039.

    Article  CAS  Google Scholar 

  22. Li X, Wang S, Tang X, Zang R, Li P, Li P, Man Z, Li C, Liu S, Wu Y, Wang G. Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage. J Colloid Interface Sci. 2019;539:168. https://doi.org/10.1016/j.jcis.2018.12.071.

    Article  CAS  Google Scholar 

  23. Zheng Q, Yi H, Li X, Zhang H. Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J Energy Chem. 2018;27(6):1597. https://doi.org/10.1016/j.jechem.2018.05.001.

    Article  Google Scholar 

  24. Ma X, Xia J, Wu X, Pan Z, Shen PK. Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries. Carbon. 2019;146:78. https://doi.org/10.1016/j.carbon.2019.02.004.

    Article  CAS  Google Scholar 

  25. Zeng X, Peng J, Guo Y, Zhu H, Huang X. Research progress on Na3V2(PO4)3 cathode material of sodium ion battery. Front Chem. 2020;8:635. https://doi.org/10.3389/fchem.2020.00635.

    Article  CAS  Google Scholar 

  26. Yang L, Wang W, Hu M, Shao J, Lv R. Ultrahigh rate binder-free Na3V2(PO4)3/carbon cathode for sodium-ion battery. J Energy Chem. 2018;27(5):1439. https://doi.org/10.1016/j.jechem.2017.08.021.

    Article  Google Scholar 

  27. Qi XR, Liu Y, Ma LL, Hou BX, Zhang HW, Li XH, Wang YS, Hui YQ, Wang RX, Bai CY, Liu H, Song JJ, Zhao XX. Delicate synthesis of quasi-inverse opal structural Na3V2(PO4)3/N-C and Na4MnV(PO4)3/N-C as cathode for high-rate sodium-ion batteries. Rare Met. 2022;41(5):1637. https://doi.org/10.1007/s12598-021-01900-3.

    Article  CAS  Google Scholar 

  28. Jian Z, Hu YS, Ji X, Chen W. NASICON-structured materials for energy storage. Adv Mater. 2017;29(20):1601925. https://doi.org/10.1002/adma.201601925.

    Article  CAS  Google Scholar 

  29. Liang Z, Zhang X, Liu R, Ortiz GF, Zhong G, Xiang Y, Chen S, Mi J, Wu S, Yang Y. New dimorphs of Na5V(PO4)2F2 as an ultrastable cathode material for sodium-ion batteries. ACS Appl Energ Mater. 2020;3(1):1181. https://doi.org/10.1021/acsaem.9b02248.

    Article  CAS  Google Scholar 

  30. Gu E, Xu J, Du Y, Ge X, Zhu X, Bao J, Zhou X. Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries. J Alloys Compd. 2019;788:240. https://doi.org/10.1016/j.jallcom.2019.02.202.

    Article  CAS  Google Scholar 

  31. Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, Maier J, Yu Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater. 2017;29(48):1700431. https://doi.org/10.1002/adma.201700431.

    Article  CAS  Google Scholar 

  32. Zhang B, Ma K, Lv X, Shi K, Wang Y, Nian Z, Li Y, Wang L, Dai L, He Z. Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: synthesis, modifications, and perspectives. J Alloys Compd. 2021;867:159060. https://doi.org/10.1016/j.jallcom.2021.159060.

    Article  CAS  Google Scholar 

  33. Li S, Ge P, Zhang C, Sun W, Hou H, Ji X. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources. 2017;366:249. https://doi.org/10.1016/j.jpowsour.2017.09.032.

    Article  CAS  Google Scholar 

  34. Shen W, Li H, Guo Z, Wang C, Li Z, Xu Q, Liu H, Wang Y, Xia Y. Double-nanocarbon synergistically modified Na3V2(PO4)3: an advanced cathode for high-rate and long-life sodium-ion batteries. ACS Appl Mater Interfaces. 2016;8(24):15341. https://doi.org/10.1021/acsami.6b03410.

    Article  CAS  Google Scholar 

  35. Cao X, Pan A, Yin B, Fang G, Wang Y, Kong X, Zhu T, Zhou J, Cao G, Liang S. Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy. 2019;60:312. https://doi.org/10.1016/j.nanoen.2019.03.066.

    Article  CAS  Google Scholar 

  36. Wang D, Cai P, Zou GQ, Hou HS, Ji XB, Tian Y, Long Z. Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Met. 2022;41(1):115. https://doi.org/10.1007/s12598-021-01743-y.

    Article  CAS  Google Scholar 

  37. Li L, Zheng H, Wang S, Chen X, Yang S, Feng C. Construction of Na3V2(PO4)3/C nanoplate as cathode for stable sodium ion storage. Ionics. 2022;28(2):981. https://doi.org/10.1007/s11581-021-04370-w.

    Article  CAS  Google Scholar 

  38. Shen L, Li Y, Roy S, Yin X, Liu W, Shi S, Wang X, Yin X, Zhang J, Zhao Y. A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries. Chin Chem Lett. 2021;32(11):3570. https://doi.org/10.1016/j.cclet.2021.03.005.

    Article  CAS  Google Scholar 

  39. Wang Q, Wang Q, Zhang M, Han B, Zhou C, Chen Y, Lv G. A first-principles investigation of the influence of polyanionic boron doping on the stability and electrochemical behavior of Na3V2(PO4)3. J Mol Model. 2019;25(4):96. https://doi.org/10.1007/s00894-019-3971-1.

    Article  CAS  Google Scholar 

  40. Wang J, Liu G, Fan K, Zhao D, Liu B, Jiang J, Qian D, Yang C, Li J. N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes. J Colloid Interface Sci. 2018;517:134. https://doi.org/10.1016/j.jcis.2018.02.001.

    Article  CAS  Google Scholar 

  41. Huang X, Yi X, Yang Q, Guo Z, Ren Y, Zeng X. Outstanding electrochemical performance of N/S co-doped carbon/Na3V2(PO4)3 hybrid as the cathode of a sodium-ion battery. Ceram Int. 2020;46(18):28084. https://doi.org/10.1016/j.ceramint.2020.07.303.

    Article  CAS  Google Scholar 

  42. Zhou Q, Wang L, Li W, Zhao K, Liu M, Wu Q, Yang Y, He G, Parkin IP, Shearing PR, Brett DJL, Zhang J, Sun X. Sodium superionic conductors (NASICONs) as cathode materials for sodium-ion batteries. Electrochem Energ Rev. 2021;4(4):793. https://doi.org/10.1007/s41918-021-00120-8.

    Article  CAS  Google Scholar 

  43. Zhang LL, Liu J, Wei C, Sun PP, Gao L, Ding XK, Liang G, Yang XL, Huang YH. N/P-dual-doped carbon-coated Na3V2(PO4)2O2F microspheres as a high-performance cathode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2020;12(3):3670. https://doi.org/10.1021/acsami.9b20490.

    Article  CAS  Google Scholar 

  44. Peng W, Zhang J, Li S, Liang J, Hu R, Yuan B, Chen G. Rationally integrated nickel sulfides for lithium storage: S/N co-doped carbon encapsulated NiS/Cu2S with greatly enhanced kinetic property and structural stability. Inorg Chem Front. 2022;9(9):2023. https://doi.org/10.1039/d1qi01510a.

    Article  CAS  Google Scholar 

  45. Li X, Hu X, Zhou L, Wen R, Xu X, Chou S, Chen L, Cao AM, Dou S. A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. J Mater Chem A. 2019;7(19):11976. https://doi.org/10.1039/c9ta01615e.

    Article  CAS  Google Scholar 

  46. Ling R, Cao B, Qi W, Yang C, Shen K, Sang Z, Guo J, Xie D, Cai S, Sun X. Three-dimensional Na3V2(PO4)3@carbon/N-doped graphene aerogel: a versatile cathode and anode host material with high-rate and ultralong-life for sodium storage. J Alloys Compd. 2021;869:159307. https://doi.org/10.1016/j.jallcom.2021.159307.

    Article  CAS  Google Scholar 

  47. Ren M, Yang M, Liu W, Li M, Su L, Wu X, Wang Y. Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources. 2016;326:313. https://doi.org/10.1016/j.jpowsour.2016.07.009.

    Article  CAS  Google Scholar 

  48. Wang P, Zhang G, Li Z, Sheng W, Zhang Y, Gu J, Zheng X, Cao F. Improved electrochemical performance of LiFePO4@N-doped carbon nanocomposites using polybenzoxazine as nitrogen and carbon sources. ACS Appl Mater Interfaces. 2016;8(40):26908. https://doi.org/10.1021/acsami.6b10594.

    Article  CAS  Google Scholar 

  49. Zhang LL, Ma D, Li T, Liu J, Ding XK, Huang YH, Yang XL. Polydopamine-derived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries. ACS Appl Mater Interfaces. 2018;10(43):36851. https://doi.org/10.1021/acsami.8b10299.

    Article  CAS  Google Scholar 

  50. Kim H, Lim H, Kim H-S, Kim KJ, Byun D, Choi W. Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res. 2018;12(2):397. https://doi.org/10.1007/s12274-018-2229-z.

    Article  CAS  Google Scholar 

  51. Wang C, Guo Z, Shen W, Zhang A, Xu Q, Liu H, Wang Y. Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials. J Mater Chem A. 2015;3(11):6064. https://doi.org/10.1039/c5ta00323g.

    Article  CAS  Google Scholar 

  52. Klee R, Lavela P, Aragón MJ, Alcántara R, Tirado JL. Enhanced high-rate performance of manganese substituted Na3V2(PO4)3/C as cathode for sodium-ion batteries. J Power Sources. 2016;313:73. https://doi.org/10.1016/j.jpowsour.2016.02.066.

    Article  CAS  Google Scholar 

  53. Chen Y, Xu Y, Sun X, Zhang B, He S, Wang C. F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: a promising cathode with high ionic conductivity for sodium ion batteries. J Power Sources. 2018;397:307. https://doi.org/10.1016/j.jpowsour.2018.07.006.

    Article  CAS  Google Scholar 

  54. Tian Z, Chen Y, Sun S, Liu H, Wang C, Huang Q, Liu C, Wang Y, Guo L. Constructing hierarchical heterojunction structure for K/Co co-substituted Na3V2(PO4)3 by integrating carbon quantum dots. J Colloid Interface Sci. 2022;613:536. https://doi.org/10.1016/j.jcis.2021.12.195.

    Article  CAS  Google Scholar 

  55. Zhou Q, Wang L, Li W, Zeng S, Zhao K, Yang Y, Wu Q, Liu M, Huang QA, Zhang J, Sun X. Carbon-decorated Na3V2(PO4)3 as ultralong lifespan cathodes for high-energy-density symmetric sodium-ion batteries. ACS Appl Mater Interfaces. 2021;13(21):25036. https://doi.org/10.1021/acsami.1c06160.

    Article  CAS  Google Scholar 

  56. Chen P, Wu C, Wang Z, Li S, Xu X, Tu J, Ding YL. Synergistically boosting sodium-storage performance of Na3V2(PO4)3 by regulating Na sites and constructing 3D interconnected carbon nanosheet frameworks. ACS Appl Energ Mater. 2022;5(2):2542. https://doi.org/10.1021/acsaem.1c04061.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 11964010, 11464014, 51862008, 52064014 and 52064013), the Natural Science Foundation of Hunan Province (No. 2020JJ4495) and the Youth Program of Hunan Provincial Education Department (No. 21B0522).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Zhu or Xian-Wen Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Zhu, L., Teng, FY. et al. High-rate performance and super long-cycle stability of Na3V2(PO4)3 cathode material coated by diatomic doped carbon. Rare Met. 42, 1570–1582 (2023). https://doi.org/10.1007/s12598-022-02204-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02204-w

Keywords

Navigation