Skip to main content

Advertisement

Log in

Shearing-force-driven delamination of waste residue into oxidatively stable MXene composites for high-performance Si anode

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The low yield of MXene is normally related to the delaminating step, contributing to the key technical challenges in moving toward industrial applications. Here, a shearing-force-driven strategy is proposed for re-exfoliating waste MXene residue to prepare oxidatively stable MXene composites in a low-cost manner, where the strong shear stress in the assisted solvent, such as carbon nanotubes (CNTs), chitosan (CS), and polyacrylamide (PAM) aqueous solutions, acts on the surface of MXene (Ti3C2Tx) through coordination between hydroxyl and Ti atoms, resulting in a rapid and efficient exfoliation of waste Ti3C2Tx residue under stirring. Furthermore, this formed coordinate bond helps to stabilize the low-valent Ti atoms on the surface of MXene, thereby enhancing the oxidative stability of Ti3C2Tx. Besides, the CNT@MXene composite is selected to construct a free-standing membrane to encapsulate Si nanoparticles, achieving a high and reversible capacity after 50 cycles. This work supports the concept of valorizing waste and adopts a fluid shear force-assisted method to re-exfoliate waste residues, which greatly reduces the cost of processing and improves the chemical stability of MXene. More importantly, this work has uncovered a new direction for the commercialization of MXene composites and has significantly improved the real-world applications of MXene-based materials.

Graphical abstract

摘要

剥离是决定MXene 产率的关键性步骤之一,同时也是抑制MXene 商业化应用的关键技术。 基于此,我们提出采用剪切应力辅助策略对废弃MXene 残渣进行再剥离,制备高稳定 MXene 复合材料。碳纳米管水溶液,壳聚糖水溶液,聚丙烯酰胺水溶液均具有较强的剪切 应力,在搅拌过程中,这些溶剂中含有的大量羟基与MXene 表面的Ti 原子发生配位作用, 使得MXene 块体实现高效快速的剥离。更重要的是,这种形成的配位键有助于稳定 MXene 表面的低价 Ti 原子,从而显著提高 Ti3C2Tx 的抗氧化能力。此外,采用CNT@MXene 复 合材料来封装硅纳米颗粒,进而构建自支撑的硅负极,在循环50 周之后,获得较高的可逆 脱嵌容量。该项工作践行了“变废为宝”的理念,采用流体剪切力辅助的策略对MXene 废渣 进行再剥离,大大降低了加工成本,提高了 MXene 的化学稳定性。更重要的是,这项工作 为 MXene 复合材料的商业化开辟了新的方向,有助于进一步提升MXene 基材料的实际 应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248. https://doi.org/10.1002/adma.201102306.

    Article  CAS  Google Scholar 

  2. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098. https://doi.org/10.1038/natrevmats.2016.98.

    Article  CAS  Google Scholar 

  3. Ming F, Liang H, Huang G, Bayhan Z, Alshareef HN. MXenes for rechargeable batteries beyond the lithium-ion. Adv Mater. 2021;33(1):2004039. https://doi.org/10.1002/adma.202004039.

    Article  CAS  Google Scholar 

  4. Liu J, Li J, Wang Y, Dong D, Yin Y, Jin H, Sun S, Dou H, Shi Y, Fu L. Technology development analysis on low carbon for power of heavy-duty commercial vehicle. Autom Innov. 2019;2(1):64. https://doi.org/10.1007/s42154-019-00054-4.

    Article  Google Scholar 

  5. Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341(6153):1502. https://doi.org/10.1126/science.1241488.

    Article  CAS  Google Scholar 

  6. Huang Y, Lu Q, Wu D, Jiang Y, Liu Z, Chen B, Zhu M, Schmidt OG. Flexible MXene films for batteries and beyond. Carbon Energy. 2022. https://doi.org/10.1002/cey2.200.

    Article  Google Scholar 

  7. Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc-ion storage. Carbon Energy. 2022;4(1):60. https://doi.org/10.1002/cey2.154.

    Article  CAS  Google Scholar 

  8. Zhu C, Geng F. Macroscopic MXene ribbon with oriented sheet stacking for high-performance flexible supercapacitors. Carbon Energy. 2021;3(1):142. https://doi.org/10.1002/cey2.65.

    Article  CAS  Google Scholar 

  9. Tang J, Peng X, Lin T, Huang X, Luo B, Wang L. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. eScience. 2021;1(2):203. https://doi.org/10.1016/j.esci.2021.12.004.

    Article  Google Scholar 

  10. Liang G, Li X, Wang Y, Yang S, Huang Z, Yang Q, Wang D, Dong B, Zhu M, Zhi C. Building durable aqueous K-ion capacitors based on MXene family. Nano Res Energy. 2022;1(1):2790. https://doi.org/10.26599/NRE.2022.9120002.

    Article  Google Scholar 

  11. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353(6304):1137. https://doi.org/10.1126/science.aag2421.

    Article  CAS  Google Scholar 

  12. Liu J, Zhang H-B, Sun R, Liu Y, Liu Z, Zhou A, Yu ZZ. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv Mater. 2017;29(38):1702367. https://doi.org/10.1002/adma.201702367.

    Article  CAS  Google Scholar 

  13. Ma F, Wang J, Yang Y, Wu L, Zhu S, Gelbal SY, Aksun-Guvenc B, Guvenc L. Stability design for the homogeneous platoon with communication time delay. Autom Innov. 2020;3(2):101. https://doi.org/10.1007/s42154-020-00102-4.

    Article  Google Scholar 

  14. Ding L, Li L, Liu Y, Wu Y, Lu Z, Deng J, Wei Y, Caro J, Wang H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat Sustain. 2020;3(4):296. https://doi.org/10.1038/s41893-020-0474-0.

    Article  Google Scholar 

  15. Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem Int Ed. 2017;56(7):1825. https://doi.org/10.1002/anie.201609306.

    Article  CAS  Google Scholar 

  16. Wang J, Chen P, Shi B, Guo W, Jaroniec M, Qiao SZ. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angew chem Int Ed. 2018;57(23):6814. https://doi.org/10.1002/anie.201801094.

    Article  CAS  Google Scholar 

  17. Xie X, Chen C, Zhang N, Tang ZR, Jiang J, Xu YJ. Microstructure and surface control of MXene films for water purification. Nat Sustain. 2019;2(9):856. https://doi.org/10.1038/s41893-019-0373-4.

    Article  Google Scholar 

  18. Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater. 2019;31(6):1805875. https://doi.org/10.1002/adma.201805875.

    Article  CAS  Google Scholar 

  19. Liu J, Jiang X, Zhang R, Zhang Y, Wu L, Lu W, Li J, Li Y, Zhang H. MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv Funct Mater. 2019;29(6):1807326. https://doi.org/10.1002/adfm.201807326.

    Article  CAS  Google Scholar 

  20. Xu B, Zhu M, Zhang W, Zhen X, Pei Z, Xue Q, Zhi C, Shi P. Ultrathin MXene-Micropattern-based field-effect transistor for probing neural activity. Adv Mater. 2016;28(17):3333. https://doi.org/10.1002/adma.201504657.

    Article  CAS  Google Scholar 

  21. Liu K, Peng Q, Li K, Chen T. Data-based interpretable modeling for property forecasting and sensitivity analysis of Li-ion battery electrode. Autom Innov. 2022;5(2):121. https://doi.org/10.1007/s42154-021-00169-7.

    Article  Google Scholar 

  22. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011;331(6017):568. https://doi.org/10.1126/science.1194975.

    Article  CAS  Google Scholar 

  23. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4:1716. https://doi.org/10.1038/ncomms2664.

    Article  CAS  Google Scholar 

  24. Naguib M, Unocic RR, Armstrong BL, Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes.” Dalton Trans. 2015;44(20):9353. https://doi.org/10.1039/C5DT01247C.

    Article  CAS  Google Scholar 

  25. Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater. 2015;27(23):3501. https://doi.org/10.1002/adma.201500604.

    Article  CAS  Google Scholar 

  26. Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J Mater Chem A. 2019;7(18):10843. https://doi.org/10.1039/C9TA01850F.

    Article  CAS  Google Scholar 

  27. Zhang CJ, Pinilla S, McEyoy N, Cullen CP, Anasori B, Long E, Park S-H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X, Duesberg GS, Gogotsi Y, Nicolosi V. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29(11):4848. https://doi.org/10.1021/acs.chemmater.7b00745.

    Article  CAS  Google Scholar 

  28. Zhang P, Soomro RA, Guan Z, Sun N, Xu B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 2020;29:163. https://doi.org/10.1016/j.ensm.2020.04.016.

    Article  Google Scholar 

  29. Zhao M-Q, Xie X, Ren CE, Makaryan T, Anasori B, Wang G, Gogotsi Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater. 2017;29(37):1702410. https://doi.org/10.1002/adma.201702410.

    Article  CAS  Google Scholar 

  30. Wu W, Xu J, Tang X, Xie P, Liu X, Xu J, Zhou H, Zhang D, Fan T. Two-dimensional nanosheets by rapid and efficient microwave exfoliation of layered materials. Chem Mater. 2018;30(17):5932. https://doi.org/10.1021/acs.chemmater.8b01976.

    Article  CAS  Google Scholar 

  31. Huang X, Wu P. A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv Funct Mater. 2020;30(12):1910048. https://doi.org/10.1002/adfm.201910048.

    Article  CAS  Google Scholar 

  32. Ghidiu M, Barsoum MW. The 110 reflection in X-ray diffraction of MXene films: misinterpretation and measurement via non-standard orientation. J Am Ceram Soc. 2017;100(12):5395. https://doi.org/10.1111/jace.15124.

    Article  CAS  Google Scholar 

  33. Wang X, Shen X, Gao Y, Wang Z, Yu R, Chen L. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2TX. J Am Chem Soc. 2015;137(7):2715. https://doi.org/10.1021/ja512820k.

    Article  CAS  Google Scholar 

  34. Ghassemi H, Harlow W, Mashtalir O, Beidaghi M, Lukatskaya MR, Gogotsi Y, Taheri ML. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem A. 2014;2(35):14339. https://doi.org/10.1039/C4TA02583K.

    Article  CAS  Google Scholar 

  35. Zhao X, Vashisth A, Prehn E, Sun W, Shah S, Habib T, Chen Y, Tan Z, Lutkenhaus J, Radovic M, Green MJ. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019;1(2):513. https://doi.org/10.1016/j.matt.2019.05.020.

    Article  Google Scholar 

  36. Zhao X, Vashisth A, Blivin JW, Tan Z, Holta DE, Kotasthane V, Shah SA, Habib T, Liu S, Lutkenhaus JL, Radovic M, Green MJ. pH, Nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTxMXene dispersions. Adv Mater Interfaces. 2020;7(20):2000845. https://doi.org/10.1002/admi.202000845.

    Article  CAS  Google Scholar 

  37. Tsai HJ, Su YY, Tseng CC, Hsu WK. Selective modification of aligned carbon nanotubes by N2 plasma and their diode behavior. Rsc Adv. 2018;8(19):10680. https://doi.org/10.1039/C8RA01396A.

    Article  CAS  Google Scholar 

  38. Shen C, Wang L, Zhou A, Wang B, Wang X, Lian W, Hu Q, Qin G, Liu X. Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials. 2018;8(2):80. https://doi.org/10.3390/nano8020080.

    Article  CAS  Google Scholar 

  39. Wang Y, Wang X, Li X, Bai Y, Xiao H, Liu Y, Yuan G. Scalable fabrication of polyaniline nanodots decorated MXene fi lm electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem Eng J. 2021;405:126664. https://doi.org/10.1016/j.cej.2020.126664.

    Article  CAS  Google Scholar 

  40. Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson POA, Eklund P, Hultman L, Li M, Chen K, Zha XH, Du S, Rozier P, Chai Z, Raymundo-Pinero E, Taberna PL, Simon P, Huang Q. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19(8):894. https://doi.org/10.1038/s41563-020-0657-0.

    Article  CAS  Google Scholar 

  41. Kamysbayev V, Filatov AS, Hu H, Rui X, Lagunas F, Wang D, Klie RF, Talapin DV. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020;369(6506):979. https://doi.org/10.1126/science.aba8311.

    Article  CAS  Google Scholar 

  42. An Y, Tian Y, Wei H, Xi B, Xiong S, Feng J, Qian Y. Porosity- and graphitization-controlled fabrication of nanoporous Silicon@carbon for lithium storage and its conjugation with MXene for Lithium-Metal anode. Adv Funct Mater. 2020;30(9):1908721. https://doi.org/10.1002/adfm.201908721.

    Article  CAS  Google Scholar 

  43. Yi R, Zai J, Dai F, Gordin ML, Wang D. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy. 2014;6:211. https://doi.org/10.1016/j.nanoen.2014.04.006.

    Article  CAS  Google Scholar 

  44. Ji J, Ji H, Zhang LL, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv Mater. 2013;25(33):4673. https://doi.org/10.1002/adma.201301530.

    Article  CAS  Google Scholar 

  45. Huang A, Ma Y, Peng J, Li L, Chou S, Ramakrishna S, Peng S. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience. 2021;1(2):141. https://doi.org/10.1016/j.esci.2021.11.006.

    Article  Google Scholar 

  46. Li Z, Zhang Y, Liu T, Gao X, Li S, Ling M, Liang C, Zheng J, Lin Z. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv Energy Mater. 2020;10(20):1903110. https://doi.org/10.1002/aenm.201903110.

    Article  CAS  Google Scholar 

  47. Zhou X, Yin YX, Wan LJ, Guo YG. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv Energy Mater. 2012;2(9):1086. https://doi.org/10.1002/aenm.201200158.

    Article  CAS  Google Scholar 

  48. Zhao X, Hayner CM, Kung MC, Kung HH. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Adv Energy Mater. 2011;1(6):1079. https://doi.org/10.1002/aenm.201100426.

    Article  CAS  Google Scholar 

  49. Liu J, Zheng Q, Goodman MD, Zhu H, Kim J, Krueger NA, Ning H, Huang X, Liu J, Terrones M, Braun PV. Graphene sandwiched mesostructured Li-ion battery electrodes. Adv Mater. 2016;28(35):7696. https://doi.org/10.1002/adma.201600829.

    Article  CAS  Google Scholar 

  50. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3(1):31. https://doi.org/10.1038/nnano.2007.411.

    Article  CAS  Google Scholar 

  51. Hassan FM, Chabot V, Elsayed AR, Xiao X, Chen Z. Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries. Nano Lett. 2014;14(1):277. https://doi.org/10.1021/nl403943g.

    Article  CAS  Google Scholar 

  52. Ma T, Xu H, Yu X, Li H, Zhang W, Cheng X, Zhu W, Qiu X. Lithiation behavior of coaxial hollow nanocables of carbon-silicon composite. ACS Nano. 2019;13(2):2274. https://doi.org/10.1021/acsnano.8b08962.

    Article  CAS  Google Scholar 

  53. Jiang M, Jiang M, Gao H, Chen J, Liu W, Ma Y, Luo W, Yang J. Comparison of additives in anode: the case of graphene, MXene, CNTs integration with silicon inside carbon nanofibers. Acta Metall Sin-engl. 2021;34(3):337. https://doi.org/10.1007/s40195-020-01153-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 52102470), the Natural Science Foundation of Jiangsu Province (No. BK20200047), General Project of Natural Science Research in Jiangsu Universities (22KJB15003), Scientific Research Project for Doctor Degree Teachers of Jiangsu Normal University (21XSRX003). 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Su, Xin-Hua Liu or Shi-Chun Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8824 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhu, ZH., Zhang, W. et al. Shearing-force-driven delamination of waste residue into oxidatively stable MXene composites for high-performance Si anode. Rare Met. 42, 2226–2237 (2023). https://doi.org/10.1007/s12598-022-02182-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02182-z

Keywords

Navigation