Skip to main content

Advertisement

Log in

Laser irradiation of graphite foils as robust current collectors for high-mass loaded electrodes of supercapacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Conductive substrates with low cost, lightweight, and chemical stability have been highly recognized as alternative current collectors for energy storage devices. Graphite foil is promising to fulfill these requests, whereas the inert surface chemistry denies its possibility as the carrier with high-mass loading active species. Herein, we report a facile yet efficient laser-mediated strategy to fast regulate graphite foils for robustly loading active species. The smooth and hydrophobic graphite foil surface turned to be a rough, super-hydrophilic one containing oxygen-rich clusters after lasering. The reconstructed surface affords anchors for active species, such as nanostructured MnO2, FeOOH, and Fe2O3, with the highest loading mass of 20 mg·cm−2. The high-mass loading MnO2 electrode offers an areal capacitance of 3933 mF·cm−2 at 1 mA·cm−2. Then, the asymmetric supercapacitor, fabricated by MnO2 and Fe2O3 deposited laser-irradiated graphite foils, exhibits improved performance with high energy density, large power capability, and long-term stability. The strategy suggests a reliable way to produce alternative current collectors for robust energy storage devices.

Graphical abstract

摘要

成本低廉、密度小、化学稳定性好的导电基底是储能器件潜在的高性能集流体。石墨箔可以同时满足上述要求, 然而其惰性的表面化学特性难以实现高载量担载活性物质。本文报道了一种激光辅助石墨箔表面结构快速改性策略, 实现了基于激光改性石墨箔高负载量电极的制备。经激光辐照处理, 光滑、疏水的石墨箔表面变为由富氧团簇构成的亲水、粗糙表面。重构的表面为活性物质, 例如MnO2、FeOOH 以及Fe2O3 等的负载提供了大量位点, 实现了高达20 mg·cm-2 的活性物质负载量。其中, 高载量MnO2 电极在1 mA·cm-2 电流密度下可以实现高达3933 mF·cm-2 的面积比电容。随后, 我们利用基于激光改性石墨箔集流体的高载量MnO2 电极和Fe2O3 电极构筑了非对称电容器, 该器件表现出高能量密度和功率密度以及长循环稳定性。本文提供的技术策略为制备高性能新型集流体提供了一条潜在的技术策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hou R, Liu B, Sun Y, Liu L, Meng J, Levi MD, Ji H, Yan X. Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy. 2020;72: 104728. https://doi.org/10.1016/j.nanoen.2020.104728.

    Article  CAS  Google Scholar 

  2. Zhao Y, Liu X, Si F, Huang L, Gao A, Lin W, Hoft D F, Shao Q, Peng G. Citrate promotes excessive lipid biosynthesis and senescence in tumor cells for tumor therapy. Adv Sci. 2021:2101553. https://doi.org/10.1002/advs.202101553.

  3. Song WJ, Lee S, Song G, Son HB, Han DY, Jeong I, Bang Y, Park S. Recent progress in aqueous based flexible energy storage devices. Energy Storage Mater. 2020;30:260. https://doi.org/10.1016/j.ensm.2020.05.006.

    Article  Google Scholar 

  4. Li Z, Zhao H, Wang J, Zhang T, Fu B, Zhang Z, Tao X. Rational structure design to realize high-performance SiOx@C anode material for lithium ion batteries. Nano Res. 2020;13(2):527. https://doi.org/10.1007/s12274-020-2644-9.

    Article  CAS  Google Scholar 

  5. Wu CP, Xie KX, He JP, Wang QP, Ma JM, Yang S, Wang QH. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021;40(1):48. https://doi.org/10.1007/s12598-020-01623-x.

    Article  CAS  Google Scholar 

  6. Yu F, Pang L, Wang HX. Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Met. 2021;40(2):440. https://doi.org/10.1007/s12598-020-01561-8.

    Article  CAS  Google Scholar 

  7. Hu C, Miao L, Yang Q, Yu X, Song L, Zheng Y, Wang C, Li L, Zhu L, Cao X, Niu H. Self-assembly of CNTs on Ni foam for enhanced performance of NiCoO2@CNT@NF supercapacitor electrode. Chem Eng J. 2021;410: 128317. https://doi.org/10.1016/j.cej.2020.128317.

    Article  CAS  Google Scholar 

  8. Sheng L, Jiang L, Wei T, Liu Z, Fan Z. Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities. Adv Energy Mater. 2017;7(19):1700668. https://doi.org/10.1002/aenm.201700668.

    Article  CAS  Google Scholar 

  9. Dahlqvist M, Zhou J, Persson I, Ahmed B, Lu J, Halim J, Tao Q, Palisaitis J, Thörnberg J, Helmer P, Hultman L, Persson POÅ, Rosen J. Out-of-plane ordered laminate borides and their 2D Ti-based derivative from chemical exfoliation. Adv Mater. 2021;33(38):2008361. https://doi.org/10.1002/adma.202008361.

    Article  CAS  Google Scholar 

  10. Pan Z, Kang L, Li T, Waqar M, Yang J, Gu Q, Liu X, Kou Z, Wang Z, Zheng L, Wang J. Black phosphorus@Ti3C2Tx MXene composites with engineered chemical bonds for commercial-level capacitive energy storage. ACS Nano. 2021;15(8):12975. https://doi.org/10.1021/acsnano.1c01817.

    Article  CAS  Google Scholar 

  11. Wang DG, Liang Z, Gao S, Qu C, Zou R. Metal-organic framework-based materials for hybrid supercapacitor application. Coord Chem Rev. 2020;404: 213093. https://doi.org/10.1016/j.ccr.2019.213093.

    Article  CAS  Google Scholar 

  12. Yuan SX, Yang MH, Lu CX, Wang XM. Synthesis of a rGO/NiO composite with a hierarchical porous structure by self-assemblyand its electrochemical performance as a supercapacitor electrode. New Carbon Mater. 2020;35(6):731. https://doi.org/10.1016/s1872-5805(20)60525-x.

    Article  CAS  Google Scholar 

  13. Li Z, Ma C, Wen Y, Wei Z, Xing X, Chu J, Yu C, Wang K, Wang ZK. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020;13(1):196. https://doi.org/10.1016/s1872-5805(20)60525-x.

    Article  CAS  Google Scholar 

  14. Pothu R, Bolagam R, Wang QH, Ni W, Cai JF, Peng XX, Feng YZ, Ma JM. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 2021;40(2):353. https://doi.org/10.1007/s12274-019-2597-z.

    Article  CAS  Google Scholar 

  15. Tang Y, Chen T, Yu S, Qiao Y, Mu S, Zhang S, Zhao Y, Hou L, Huang W, Gao F. A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources. 2015;295:314. https://doi.org/10.1016/j.jpowsour.2015.07.035.

    Article  CAS  Google Scholar 

  16. Tang Y, Chen S, Chen T, Guo W, Li Y, Mu S, Yu S, Zhao Y, Wen F, Gao F. Synthesis of peanut-like hierarchical manganese carbonate microcrystals via magnetically driven self-assembly for high performance asymmetric supercapacitors. J Mater Chem A. 2017;5(8):3923. https://doi.org/10.1039/c6ta09997a.

    Article  CAS  Google Scholar 

  17. Zhang Q, Wu L, Fan M, Wu X, Deng Q, He G, Ding Y. A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. Energy Storage Mater. 2021;34:708. https://doi.org/10.1016/j.ensm.2020.10.028.

    Article  Google Scholar 

  18. Yang H, Feng Z, Teng X, Guan L, Hu H, Wu M. Three-dimensional printing of high-mass loading electrodes for energy storage applications. InfoMat. 2021;3(6):631. https://doi.org/10.1016/j.mtadv.2021.100157.

    Article  CAS  Google Scholar 

  19. Shi J, Zhang J, Guo J. Avoiding pitfalls in rechargeable aluminum batteries research. ACS Energy Lett. 2019;4(9):2124. https://doi.org/10.1021/acsenergylett.9b01285.

    Article  CAS  Google Scholar 

  20. Gao Y, Xie C, Zheng Z. Textile composite electrodes for flexible batteries and supercapacitors: opportunities and challenges. Adv Energy Mater. 2021;11(3):2002838. https://doi.org/10.1002/aenm.202002838.

    Article  CAS  Google Scholar 

  21. Talande SV, Bakandritsos A, Jakubec P, Malina O, Zbořil R, Tuček J. Densely functionalized cyanographene bypasses aqueous electrolytes and synthetic limitations toward seamless graphene/β-FeOOH hybrids for supercapacitors. Adv Funct Mater. 2019;29(51):1906998. https://doi.org/10.1002/adfm.201906998.

    Article  CAS  Google Scholar 

  22. Li J, Luo S, Wang C, Tang Q, Wang Y, Han X, Ran H, Wan J, Gu X, Wang X, Hu C. Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage. Nano Res. 2020;13(3):759. https://doi.org/10.1007/s12274-020-2691-2.

    Article  CAS  Google Scholar 

  23. Lv Z, Tang Y, Zhu Z, Wei J, Li W, Xia H, Jiang Y, Liu Z, Luo Y, Ge X, Zhang Y, Wang R, Zhang W, Loh XJ, Chen X. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv Mater. 2018;30(50):1805468. https://doi.org/10.1002/adma.201805468.

    Article  CAS  Google Scholar 

  24. Tagliaferri S, Nagaraju G, Panagiotopoulos A, Och M, Cheng G, Iacoviello F, Mattevi C. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance. ACS Nano. 2021;15(9):15342. https://doi.org/10.1021/acsnano.1c06535.

    Article  CAS  Google Scholar 

  25. Gao C, Huang J, Xiao Y, Zhang G, Dai C, Li Z, Zhao Y, Jiang L, Qu L. A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat Commun. 2021;12(1):2647. https://doi.org/10.1038/s41467-021-22912-8.

    Article  CAS  Google Scholar 

  26. Li H, Li M, Zhao H, Li T, Fang Z. A novel type of chloride ion battery that can change the structure of electric vehicle. J Power Sources. 2021;512: 230507. https://doi.org/10.1016/j.jpowsour.2021.230507.

    Article  CAS  Google Scholar 

  27. Liu Z, Li S, Yang J, Tan X, Yu C, Zhao C, Han X, Huang H, Wan G, Liu Y, Tschulik K, Qiu J. Ultrafast construction of oxygen-containing scaffold over graphite for trapping Ni2+ into single atom catalysts. ACS Nano. 2020;14(9):11662. https://doi.org/10.1021/acsnano.0c04210.

    Article  CAS  Google Scholar 

  28. Ramalingam K, Wei Q, Chen F, Shen K, Liang M, Dai J, Hou X, Ru Q, Babu G, He Q, Ajayan PM. Achieving high-quality freshwater from a self-sustainable integrated solar redox-flow desalination device. Small. 2021;17(30):2100490. https://doi.org/10.1002/smll.202100490.

    Article  CAS  Google Scholar 

  29. Wang T, Liu Q, Li T, Lu S, Chen G, Shi X, Asiri AM, Luo Y, Ma D, Sun X. A magnetron sputtered Mo3Si thin film: an efficient electrocatalyst for N2 reduction under ambient conditions. J Mater Chem A. 2021;9(2):884. https://doi.org/10.1039/d0ta11231c.

    Article  CAS  Google Scholar 

  30. Yao J, Huang Y, Hou Y, Yang B, Lei L, Tang X, Scheckel KG, Li Z, Wu D, Dionysiou DD. Graphene-modified graphite paper cathode for the efficient bioelectrochemical removal of chromium. Chem Eng J. 2021;405: 126545. https://doi.org/10.1016/j.cej.2020.126545.

    Article  CAS  Google Scholar 

  31. Yu B, Feng L, He Y, Yang L, Xun Y. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J Hazard Mater. 2021;401: 123394. https://doi.org/10.1016/j.jhazmat.2020.123394.

    Article  CAS  Google Scholar 

  32. Zhang M, Zhou Q, Chen J, Yu X, Huang L, Li Y, Li C, Shi G. An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering. Energy Environ Sci. 2016;9(6):2005. https://doi.org/10.1039/c6ee00615a.

    Article  CAS  Google Scholar 

  33. Mandal D, Routh P, Mahato AK, Nandi AK. Electrochemically modified graphite paper as an advanced electrode substrate for supercapacitor application. J Mater Chem A. 2019;7(29):17547. https://doi.org/10.1039/c9ta04496e.

    Article  CAS  Google Scholar 

  34. Wu Y, Wang M, Tao Y, Zhang K, Cai M, Ding Y, Liu X, Hayat T, Alsaedi A, Dai S. Electrochemically derived graphene-like carbon film as a superb substrate for high-performance aqueous Zn-ion batteries. Adv Funct Mater. 2020;30(5):1907120. https://doi.org/10.1002/adfm.201907120.

    Article  CAS  Google Scholar 

  35. Kong D, Cheng C, Wang Y, Huang Z, Liu B, Von Lim Y, Ge Q, Yang HY. Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes. J Mater Chem A. 2017;5(19):9122. https://doi.org/10.1039/c7ta01172e.

    Article  CAS  Google Scholar 

  36. Yu M, Huang Y, Li C, Zeng Y, Wang W, Li Y, Fang P, Lu X, Tong Y. Building three-dimensional graphene frameworks for energy storage and catalysis. Adv Funct Mater. 2015;25(2):324. https://doi.org/10.1002/adfm.201402964.

    Article  CAS  Google Scholar 

  37. Liu H, Lin W, Hong M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light-Sci Appl. 2021;10(1):162. https://doi.org/10.1038/s41377-021-00596-5.

    Article  CAS  Google Scholar 

  38. Ye R, James DK, Tour JM. Laser-induced graphene: from discovery to translation. Adv Mater. 2019;31(1):1803621. https://doi.org/10.1002/adma.201803621.

    Article  CAS  Google Scholar 

  39. Zhang F, Alhajji E, Lei Y, Kurra N, Alshareef HN. Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient. Adv Energy Mater. 2018;8(23):1800353. https://doi.org/10.1002/aenm.201800353.

    Article  CAS  Google Scholar 

  40. Borenstein A, Strauss V, Kowal MD, Anderson M, Kaner RB. Carbon nanodots: laser-assisted lattice recovery of graphene by carbon nanodot incorporation. Small. 2019;15(52):1970285. https://doi.org/10.1002/smll.201904918.

    Article  CAS  Google Scholar 

  41. Han M, He M, Wang G, Luo S. Phosphoric acid involved laser induced microporous graphene via proton conducting polybenzimidazole for high-performance micro-supercapacitors. J Power Sources. 2021;514:230579. https://doi.org/10.1016/j.jpowsour.2021.230579.

    Article  CAS  Google Scholar 

  42. Tran TX, Choi H, Che CH, Sul JH, Kim IG, Lee SM, Kim JH, In JB. Laser-induced reduction of graphene oxide by intensity-modulated line beam for supercapacitor applications. ACS Appl Mater Interfaces. 2018;10(46):39777. https://doi.org/10.1021/acsami.8b14678.

    Article  CAS  Google Scholar 

  43. Li Q, Sun X, Zhao W, Hou X, Zhang Y, Zhao F, Li X, Mei X. Processing of a large-scale microporous group on copper foil current collectors for lithium batteries using femtosecond laser. Adv Eng Mater. 2020;22(12):2000710. https://doi.org/10.1002/adem.202000710.

    Article  CAS  Google Scholar 

  44. Zhang A, Chen T, Song S, Yang W, Justin Gooding J, Liu J. Ultrafast generation of highly crystalline graphene quantum dots from graphite paper via laser writing. J Colloid Interf Sci. 2021;594:460. https://doi.org/10.1016/j.jcis.2021.03.044.

    Article  CAS  Google Scholar 

  45. Liu S, Du C, Zhang Y, Xie M, Chen J, Wan L. Oxidative-polymerization and deoxygenation of mixed phenols to faradaic-oxygen modified mesoporous carbon and its supercapacitive performances. J Energy Storage. 2021;34: 102198. https://doi.org/10.1016/j.est.2020.102198.

    Article  Google Scholar 

  46. Huang ZH, Song Y, Feng DY, Sun Z, Sun X, Liu XX. High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano. 2018;12(4):3557. https://doi.org/10.1021/acsnano.8b00621.

    Article  CAS  Google Scholar 

  47. Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater. 2002;14(9):3946. https://doi.org/10.1021/cm020408q.

    Article  CAS  Google Scholar 

  48. Wang H, Xu C, Chen Y, Wang Y. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density. Energy Storage Mater. 2017;8:127. https://doi.org/10.1016/j.ensm.2017.05.007.

    Article  Google Scholar 

  49. Zhou G, Wang DW, Yin LC, Li N, Li F, Cheng HM. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano. 2012;6(4):3214. https://doi.org/10.1021/nn300098m.

    Article  CAS  Google Scholar 

  50. Zubir N A, Yacou C, Motuzas J, Zhang X, Diniz da Costa J C. Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci Rep. 2014;4(1):4594. https://doi.org/10.1038/srep04594.

  51. Huang ZH, Sun FF, Batmunkh M, Li WH, Li H, Sun Y, Zhao Q, Liu X, Ma TY. Zinc–nickel–cobalt ternary hydroxide nanoarrays for high-performance supercapacitors. J Mater Chem A. 2019;7(19):11826. https://doi.org/10.1039/c9ta01995b.

    Article  CAS  Google Scholar 

  52. Lu X, Zeng Y, Yu M, Zhai T, Liang C, Xie S, Balogun MS, Tong Y. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater. 2014;26(19):3148. https://doi.org/10.1002/adma.202003125.

    Article  CAS  Google Scholar 

  53. Sun P, Deng Z, Yang P, Yu X, Chen Y, Liang Z, Meng H, Xie W, Tan S, Mai W. Freestanding CNT–WO3 hybrid electrodes for flexible asymmetric supercapacitors. J Mater Chem A. 2015;3(22):12076. https://doi.org/10.1039/c5ta02316e.

    Article  CAS  Google Scholar 

  54. Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014;14(2):731. https://doi.org/10.1021/nl404008e.

    Article  CAS  Google Scholar 

  55. Zeng Y, Han Y, Zhao Y, Zeng Y, Yu M, Liu Y, Tang H, Tong Y, Lu X. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater. 2015;5(12):1402176. https://doi.org/10.1002/aenm.201402176.

    Article  CAS  Google Scholar 

  56. Zhang Z, Chi K, Xiao F, Wang S. Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J Mater Chem A. 2015;3(24):12828. https://doi.org/10.1039/c5ta02685g.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21975287, 22179145 and 22138013), Shandong Provincial Natural Science Foundation (No. ZR2020ZD08), the Startup Support Grant from China University of Petroleum (East China), and the Technological Development Grant from Shandong Energy Group Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Hu or Ming-Bo Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XT., Wan, Y., Wang, B. et al. Laser irradiation of graphite foils as robust current collectors for high-mass loaded electrodes of supercapacitors. Rare Met. 41, 4094–4103 (2022). https://doi.org/10.1007/s12598-022-02090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02090-2

Keywords

Navigation