Skip to main content

Advertisement

Log in

3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to the low cost and high theoretical energy density, lithium–sulfur battery has become one of the most promising energy storage battery systems. However, the inherent cycle instability and safety problems of traditional liquid lithium–sulfur batteries greatly limit their commercial applications. In this work, polytetrafluoroethylene (PTFE) membrane was introduced into Li7La3Zr2O12 (LLZO)@poly(ethylene oxide) (PEO)-based composite electrolyte as a supporting framework to prepare a new PTFE@LLZO@PEO composite electrolyte for lithium–sulfur battery. The introduction of PTFE membrane further improved the mechanical properties and thermal stability of the electrolyte. The ionic conductivity of the prepared PTFE@LLZO@PEO solid electrolyte was 5.03 × 10−5 S·cm−1 at 30 °C and 2.54 × 10−4 S·cm−1 at 60 °C. Moreover, the symmetric battery exhibited high cycle stability (300 h). The Li–S battery based on PTFE@LLZO@PEO electrolyte exhibited excellent electrochemical performance.

Graphical abstract

摘要

锂硫电池由于成本低、理论能量密度高, 已成为最有前途的储能电池系统之一。然而, 传统液态锂硫电池固有的循环不稳定性和安全性问题极大地限制了其商业化应用。本工作将聚四氟乙烯(PTFE)膜引入到Li7La3Zr2O12(LLZO)@PEO 基复合电解液中作为支撑骨架, 制备了锂硫电池用新型PTFE@LLZO@PEO复合电解质。PTFE膜的引入进一步提高了电解质的力学性能和热稳定性。制备的PTFE@LLZO@PEO固体电解质在30 ℃时的电导率为5.03 × 10–5 S·cm−1, 在60 ℃时的电导率为2.54 × 10–4 S·cm−1, 且对称电池具有较高的循环稳定性( 300 h)。基于PTFE@LLZO@PEO电解液的Li-S电池表现出优异的电化学性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chai J, Liu Z, Zhang J, Sun J, Tian Z, Ji Y, Tang K, Zhou X, Cui G. A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl Mater Interfaces. 2017;9(21):17897.

    Article  CAS  Google Scholar 

  2. Wu F, Chu F, Ferrero GA, Sevilla M, Fuertes AB, Borodin O, Yu Y, Yushin G. Boosting high-performance in lithium–sulfur batteries via dilute electrolyte. Nano Lett. 2020;20(7):5391.

    Article  CAS  Google Scholar 

  3. Wu PF, Shi BY, Tu HB, Guo CQ, Liu AH, Yan G, Yu UZJ. Pomegranate-type Si/C anode with SiC taped, well-dispersed tiny Si particles for lithium-ion batteries. J Adv Ceram. 2021;10(5):1129.

    Article  CAS  Google Scholar 

  4. Gao ZG, Zhang SJ, Huang ZG, Liu Q, Wang WW, Li JT. Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. Chin Chem Lett. 2019;30(2):525.

    Article  CAS  Google Scholar 

  5. Wu X, Liang X, Zhang X, Lan L, Li S, Gai Q. Structural evolution of plasma sprayed amorphous Li4Ti5O12 electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery. J Adv Ceram. 2021;10(2):347.

    Article  CAS  Google Scholar 

  6. Ma Y. Computer simulation of cathode materials for lithium ion and lithium batteries: a review. Energy Environ Mater. 2018;1(3):148.

    Article  CAS  Google Scholar 

  7. Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium–sulfur batteries. ACS Cent Sci. 2020;6(7):1095.

    Article  CAS  Google Scholar 

  8. Wang WP, Zhang J, Chou J, Yin YX, You Y, Xin S, Guo YG. Solidifying cathode–electrolyte interface for lithium–sulfur batteries. Adv Energy Mater. 2020;11(2):2000791.

    Article  CAS  Google Scholar 

  9. Ye H, Li M, Liu T, Li Y, Lu J. Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries. ACS Energy Lett. 2020;5(7):2234.

    Article  CAS  Google Scholar 

  10. Gonzalez Puente PM, Song SB, Cao SY, Rannalter LZ, Pan ZW, Xiang X, Shen Q, Chen F. Garnet-type solid electrolyte: advances of ionic transport performance and its application in all-solid-state batteries. J Adv Ceram. 2021;10(5):933.

    Article  CAS  Google Scholar 

  11. Xie YL, Kong JR, Pan D, Liu XN, Zhou T. Preparation and performance study of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Gd0.2O2-δ gradient composite cathode for solid oxide electrolysis cell. Chin J Rare Met. 2021;45(11):1343.

  12. Wang Y, Ji H, Zhang X, Shi J, Li X, Jiang X, Qu X. Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li-S battery. ACS Appl Mater Interfaces. 2021;13(14):16469.

    Article  CAS  Google Scholar 

  13. Tesio AY, Gomez-Camer JL, Morales J, Caballero A. Simple and sustainable preparation of nonactivated porous carbon from brewing waste for high-performance lithium–sulfur batteries. Chemsuschem. 2020;13(13):3439.

    Article  CAS  Google Scholar 

  14. Qiu Y, Yin XJ, Wang MX, Li M, Sun X, Jiang B, Zhou H, Tang DY, Zhang Y, Fan LS, Zhang NQ. Constructed conductive CoSe2 nanoarrays as efficient electrocatalyst for high-performance Li–S battery. Rare Met. 2021;40(11):3147.

    Article  CAS  Google Scholar 

  15. Yang X, Li XT, Zhao CF, Fu ZH, Zhang QS, Hu C. Promoted deposition of three-dimensional Li2S on catalytic Co phthalocyanine nanorods for stable high-loading lithium–sulfur batteries. ACS Appl Mater Interfaces. 2020;12(29):32752.

    Article  CAS  Google Scholar 

  16. Pan Y, Cheng X, Gao M, Fu Y, Feng J, Ahmed H, Gong L, Zhang H, Battaglia VS. Dual-functional multichannel carbon framework embedded with CoS2 nanoparticles: promoting the phase transformation for high-loading Li-S batteries. ACS Appl Mater Interfaces. 2020;12(29):32726.

    Article  CAS  Google Scholar 

  17. Yang M, Shi D, Sun X, Li Y, Liang Z, Zhang L, Shao Y, Wu Y, Hao X. Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium–sulfur batteries. J Mater Chem A. 2020;8(1):296.

    Article  CAS  Google Scholar 

  18. Yang Q, Deng N, Chen J, Cheng B, Kang W. The recent research progress and prospect of gel polymer electrolytes in lithium–sulfur batteries. Chem Eng J. 2021;413:127427.

    Article  CAS  Google Scholar 

  19. Shao D, Yang L, Luo K, Chen M, Zeng P, Liu H, Liu L, Chang B, Luo Z, Wang X. Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. Chem Eng J. 2020;389:124300.

    Article  CAS  Google Scholar 

  20. Xia Y, Liang YF, Xie D, Wang XL, Zhang SZ, Xia XH, Gu CD, Tu JP. A poly(vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium–sulfur batteries. Chem Eng J. 2019;358:1047.

  21. Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter. 2020;3(1):57.

    Article  Google Scholar 

  22. Li Y, Guo XT, Zhang ST, Pang H. Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2020;40(2):417.

    Article  CAS  Google Scholar 

  23. Yang Y, Chen C, Hu J, Deng Y, Zhang Y, Yang D. High performance lithium–sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chin Chem Lett. 2018;29(12):1777.

    Article  CAS  Google Scholar 

  24. Chen WJ, Zhao CX, Li BQ, Jin Q, Zhang XQ, Yuan TQ, Zhang X, Jin Z, Kaskel S, Zhang Q. A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries. Energy Environ Mater. 2020;3(2):160.

    Article  CAS  Google Scholar 

  25. Andreas Arie A, Lenora S, Kristianto H, Frida Susanti R, Kee LJ. Potato peel based carbon-sulfur composite as cathode materials for lithium sulfur battery. J Nanosci Nanotechnol. 2021;21(12):6243.

    Article  CAS  Google Scholar 

  26. Zhu L, Hu RW, Xiang YH, Yang XX, Chen Z, Xiong LZ, Wu XW, He ZQ, Lei WX. Enhanced performance of Li-S battery by constructing inner conductive network and outer adsorption layer sulfur-carbon composite. Int J Energy Res. 2021;45(4):6002.

    Article  CAS  Google Scholar 

  27. Liu KF, Zhao HB, Ye DX, Zhang JJ. Recent progress in organic polymers-composited sulfur materials as cathodes for lithium–sulfur battery. Chem Eng J. 2021;417:129309.

    Article  CAS  Google Scholar 

  28. Li XC, Zhang Y, Wang ST, Liu Y, Ding Y, He GH, Jiang XB, Xiao W, Yu GH. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Lett. 2020;20(9):6922.

    Article  CAS  Google Scholar 

  29. Man LM, Yang Y, Wang H, Wang YY, An YN, Bao JL, Wang CY, Yang ZH. In situ-cross-linked supramolecular eco-binders for improved capacity and stability of lithium–sulfur batteries. ACS Appl Energy Mater. 2021;4(4):3803.

    Article  CAS  Google Scholar 

  30. Chen H, Wu ZZ, Su Z, Hencz L, Chen S, Yan C, Zhang SQ. A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. J Energy Chem. 2021;62:127.

    Article  Google Scholar 

  31. Eshetu GG, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez LM, Zhang H, Armand M. Lithium Azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed Engl. 2017;56(48):15368.

    Article  CAS  Google Scholar 

  32. Hong S, Wang Y, Kim N, Lee SB. Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: from fundamental research to performance improvement. J Mater Sci. 2021;56(14):8358.

    Article  CAS  Google Scholar 

  33. Xu B, Li X, Yang C, Li Y, Grundish NS, Chien PH, Dong K, Manke I, Fang R, Wu N, Xu H, Dolocan A, Goodenough JB. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J Am Chem Soc. 2021;143(17):6542.

    Article  CAS  Google Scholar 

  34. Ding WQ, Lv F, Xu N, Wu MT, Liu J, Gao XP. Polyethylene oxide-based solid-state composite polymer electrolytes for rechargeable lithium batteries. ACS Appl Energy Mater. 2021;4(5):4581.

    Article  CAS  Google Scholar 

  35. Banerjee A, Wang XF, Fang CC, Wu EA, Meng YS. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev. 2020;120(14):6878.

    Article  CAS  Google Scholar 

  36. Yan CL. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met. 2020;39(5):458.

    Article  CAS  Google Scholar 

  37. Jin Y, Zong X, Zhang X, Liu C, Li D, Jia Z, Li G, Zhou X, Wei J, Xiong Y. Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J Power Sources. 2021;501:230027.

    Article  CAS  Google Scholar 

  38. Wang S, Sun Q, Peng W, Ma Y, Zhou Y, Song D, Zhang H, Shi X, Li C, Zhang L. Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte. J Energy Chem. 2021;58:85.

    Article  Google Scholar 

  39. Chen H, Zhou CJ, Dong XR, Yan M, Liang JY, Xin S, Wu XW, Guo YG, Zeng XX. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries. ACS Appl Mater Interfaces. 2021;13(19):22978.

    Article  CAS  Google Scholar 

  40. Zhu X, Wang K, Xu Y, Zhang G, Li S, Li C, Zhang X, Sun X, Ge X, Ma Y. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes. Energy Storage Mater. 2021;36:291.

    Article  Google Scholar 

  41. Yu Q, Jiang K, Yu C, Chen X, Zhang C, Yao Y, Jiang B, Long H. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin Chem Lett. 2021;32(9):2659.

    Article  CAS  Google Scholar 

  42. Li X, Wang D, Wang H, Yan H, Gong Z, Yang Y. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl Mater Interfaces. 2019;11(25):22745.

    Article  CAS  Google Scholar 

  43. Fang R, Xu B, Grundish NS, Xia Y, Li Y, Lu C, Liu Y, Wu N, Goodenough JB. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew Chem Int Ed Engl. 2021;60(32):17701.

    Article  CAS  Google Scholar 

  44. Lee F, Tsai MC, Lin MH, Ni’mah YL, Hy S, Kuo CY, Cheng JH, Rick J, Su WN, Hwang BJ. Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide. J Mater Chem A. 2017;5(14):6708.

    Article  CAS  Google Scholar 

  45. Kou W, Wang J, Li W, Lv R, Wang J. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium–sulfur battery. J Membr Sci. 2021;634:119432.

    Article  CAS  Google Scholar 

  46. Tao X, Liu Y, Liu W, Zhou G, Yi C. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 2017;17(5):2967.

    Article  CAS  Google Scholar 

  47. Wang C, Yang Y, Liu X, Zhong H, Xu H, Xu Z, Shao H, Ding F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. Acs Appl Mater Interfaces. 2017;9(15):13694.

    Article  CAS  Google Scholar 

  48. Fang R, Xu H, Xu B, Li X, Li Y, Goodenough JB. Reaction mechanism optimization of solid-state Li–S batteries with a PEO-based electrolyte. Adv Funct Mater. 2020;31(2):2001812.

    Article  CAS  Google Scholar 

  49. Song S, Wu Y, Tang W, Deng F, Yao J, Liu Z, Hu R, Alamusi ZW, Lu L, Hu N. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustain Chem Eng. 2019;7(7):7163.

    Article  CAS  Google Scholar 

  50. Li Y, Han JT, Wang CA, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem. 2012;22(30):15357.

    Article  CAS  Google Scholar 

  51. Ji Y, Yang K, Liu M, Chen S, Liu X, Yang B, Wang Z, Huang W, Song Z, Xue S, Fu Y, Yang L, Miller TS, Pan F. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium–sulfur batteries. Adv Funct Mater. 2021;31(47):2104830.

    Article  CAS  Google Scholar 

  52. Jiang T, He P, Wang G, Shen Y, Fan LZ. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater. 2020;10(12):1903376.

    Article  CAS  Google Scholar 

  53. Hippauf F, Schumm B, Doerfler S, Althues H, Fujiki S, Shiratsuchi T, Tsujimura T, Aihara Y, Kaskel S. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 2019;21:390.

    Article  Google Scholar 

  54. Delluva AA, Kulberg-Savercool J, Holewinski A. Decomposition of trace Li2CO3 during charging leads to cathode interface degradation with the solid electrolyte LLZO of trace Li2CO3 during charging leads to cathode interface degradation with the solid electrolyte LLZO. Adv Func Mater. 2021;31(34):2103716.

    Article  CAS  Google Scholar 

  55. Li W, Wang Q, Jin J, Li Y, Wu M, Wen Z. Constructing dual interfacial modification by synergetic electronic and ionic conductors: toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 2019;23:299.

    Article  Google Scholar 

  56. Nagajothi AJ, Kannan R, Rajashabala S. Studies on electrochemical properties of poly (ethylene oxide)-based gel polymer electrolytes with the effect of chitosan for lithium–sulfur batteries. Polym Bull. 2017;74(12):4887.

    Article  CAS  Google Scholar 

  57. Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019;31(50):1902029.

    Article  CAS  Google Scholar 

  58. Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough JB, Yu G. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed Engl. 2018;57(8):2096.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Talents Project of Beijing Municipal Committee Organization Department (No. 2018000021223ZK21), the Fundamental Research Funds for the Central Universities (No. 2021JCCXJD01), Key R&D and Transformation Projects in Qinghai Province (No. 2021-HZ-808) and Hebei Province (No. 21314401D), Open Funds of Chongqing Key Laboratory of Green Aviation Energy and Power (No. GATRI2021F01003B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Ping Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZC., Li, TY., Deng, YR. et al. 3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium–sulfur batteries. Rare Met. 41, 2834–2843 (2022). https://doi.org/10.1007/s12598-022-02009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02009-x

Keywords

Navigation