Skip to main content
Log in

Microstructure and deuterium resistance of Al2O3/Y2O3 composite coating with different annealing atmospheres

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

采用射频磁控溅射方法制备了总厚度约 320 nm 的 Al2O3/Y2O3 复合涂层, 并对其进行真空, Ar气和H2三种不同气氛退火处理, 研究微观形貌对涂层阻氘性能的影响. 结果表明, 热处理后涂层保持致密且界面清晰, 经 Ar气和 H2 气氛退火处理后, Al2O3/Y2O3 涂层由 γ-Al2O3 相和立方Y2O3相组成; 然而, 在真空气氛下, 涂层中仅有立方Y2O3相存在. 相对 316L 不锈钢基体材料而言, 涂层样品可将氘渗透率降低2–3 个数量级, 表现出良好的阻氘性能. H2 气氛下, H2还原作用使得 Al2O3/Y2O3 涂层中存在大量氧空位, 为氘的渗透提供快速扩散通道; 另外, 真空退火后涂层表面较大的表面粗糙度增大了氘分子的表面吸附量, 从而使得氘渗透率增大; Ar气气氛退火后样品, 适宜表面形态使得其具有良好的阻氘性能, 在 700 °C 和 80 kPa 渗透氘压下氘渗透率最低, 具体数值为 9.99477 × 10–14 mol·m−1·s−1·Pa−0.5.研究表明, 涂层的存在均降低了氘渗透率, 但阻氘性能存在差异主要受涂层表面粗糙度和涂层内部微观缺陷的共同影响.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Smith DL, Konys J, Muroga T, Evitkhin V. Development of coatings for fusion power applications. J Nucl Mater. 2002;307–311(3):1314.

    Article  Google Scholar 

  2. Chikada T, Suzuki A, Yao Z, Levchuk D, Maier H, Terai T, Muroga T. Deuterium permeation behavior of erbium oxide coating on austenitic, ferritic, and ferritic/martensitic steels. Fusion Eng Des. 2009;84(2):590.

    Article  CAS  Google Scholar 

  3. Chikada T, Tanaka T, Yuyama K, Uemura Y, Sakurada S, Fujita H, Li XC, Isobe K, Hayashi T, Oya Y. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition. Nucl Mater and Energy. 2016;9:529.

    Article  Google Scholar 

  4. Wang B, Liu L, Xiang X, Rao Y, Ye X, Chen CA. Diffusive transport parameters of deuterium through China reduced activation ferritic-martensitic steels. J Nucl Mater. 2016;470:30.

    Article  CAS  Google Scholar 

  5. Zinkle SJ. Fusion materials science: overview of challenges and recent progress. Phys Plasmas. 2005;12(5):58101.

    Article  Google Scholar 

  6. Liu W, Xue L, Di J, Zhou Q, Yan Y. An efficient graphene oxide reinforced aluminum phosphate/Cr2O3 double coating as an enhanced tritium permeation barrier. Surf Coat Tech. 2021;405:126699.

    Article  CAS  Google Scholar 

  7. Mukherjee S, Jamnapara NI. Materials research and development opportunities in reactors fusion. Proc Indian Natl Sci Acad. 2015;81(4):827.

    Article  Google Scholar 

  8. Alejo GD, León CA, Aguilar EA, Bedolla JE. Effect of current density on the microstructure and adhesion of Ni-Co/Al2O3 composite coatings. Mater Res Soc Symp Proc. 2016;1820:1.

    Google Scholar 

  9. Yang H, Shao ZM, Wang W, Ji X, Li C. A composite coating of GO-Al2O3 for tritium permeation barrier. Fusion Eng Des. 2020;156:11689.

    Article  Google Scholar 

  10. Chikada T, Suzuki A, Kobayashi T, Maier H, Terai T, Muroga T. Microstructure change and deuterium permeation behavior of erbium oxide coating. J Nucl Mater. 2011;417(1–3):1241.

    Article  CAS  Google Scholar 

  11. Gao HD, Wang ZH, Shao J. Manufacture and characteristics of Al2O3 composite coating on steel substrate by SHS process. Rare Met. 2019;38(7):704.

    Article  CAS  Google Scholar 

  12. Islam MM, Calatayud M, Pacchioni G. Hydrogen adsorption and diffusion on the anatase TiO2(101) surface: a first-principles investigation. J Phys Chem C. 2011;115(14):6809.

    Article  CAS  Google Scholar 

  13. Sample T, Perujo A, Kolbe H, Mancinelli B. The hydrogen permeation behaviour of aluminised coated martensitic steels under gaseous hydrogen, liquid Pb–17Li/hydrogen and cyclic tensile load. J Nucl Mater. 2000;283–287:1272.

    Article  Google Scholar 

  14. Gao HD, Wang ZH, Shao J. Manufacture and characteristics of Al2O3 composite coating on steel substrate by SHS process. Rare Met. 2019;38(9):892.

    Article  Google Scholar 

  15. Bai S, Yuan XM, Shuan GQ, Liu ZX, Yang HG, Wang LJ. Hydrogen permeation rate and stability of in-situ oxidation layer on surface of ZrH1.85 at 600 °C. Chin J Rare Metals. 2020;44(1):41.

    Google Scholar 

  16. Wu YY, He D, Li S, Liu XP, Wang SM, Jiang LJ. Microstructure change and deuterium permeation behavior of the yttrium oxide coating prepared by MOCVD. Int J Hydrog Energy. 2014;39(35):20305.

    Article  CAS  Google Scholar 

  17. Li Q, Liu J, Lv WL, Mo LB, Duan DW, Gu HW, Ding FZ, Tang T, Luo DL, Cao JL. Stability of Y2O3 hydrogen isotope permeation barriers in hydrogen at high temperatures. Int J Hydrog Energy. 2013;38(11):4266.

    Article  CAS  Google Scholar 

  18. Gilbert MR, Forrest RA. Comprehensive handbook of activation data calculated using EASY-2003. Fusion Eng Des. 2006;81(8–14):1511.

    Article  CAS  Google Scholar 

  19. Feng BB, Wang Y, Jia Q, Huang W, Suo HL, Ma W. Thermophysical properties of solution precursor plasma-sprayed La2Ce2O7 thermal barrier coatings. Rare Met. 2019;38(7):689.

    Article  CAS  Google Scholar 

  20. Wang WJ, Yu QH, Liu XP, Lu Z. Preparation of Al2O3/Y2O3 composite coating for deuterium permeation reduction. J Rare Earth. 2020;38(11):1237.

    Article  CAS  Google Scholar 

  21. Wang WJ, Yu QH, Liu XP, Hao L, Mi J, Li SJ, Li S, Lu Z, Li SS, Liu H. Study on the influence of introducing Al transition layer on deuterium resistance of Al2O3 coating. Int J Photoenergy. 2021. https://doi.org/10.1155/2021/6687288.

    Article  Google Scholar 

  22. Serra E, Perujo A, Benamati G. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman. J Nucl Mater. 1997;245(2):108.

    Article  CAS  Google Scholar 

  23. Forcey K, Ross D, Simpson J, Evans D. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications. J Nucl Mater. 1988;160(2–3):117.

    Article  CAS  Google Scholar 

  24. Ishibashi H, Shimomoto K, Nakahigashi K. Electron density distribution and chemical bonding of Ln2O3 (Ln=Y, Tm, Yb) from powder X-ray diffraction data by the maximum-entropy method. J Phys Chem Solids. 1994;55(9):809.

    Article  CAS  Google Scholar 

  25. Kaszewski J, Rosowska J, Witkowski B, Wachnicki L, Wenelska K, Mijowska E, Bulyk LI, Wlodarczyk D, Suchocki A, Kozankiewicz B, Godlewski M. Shape control over microwave hydrothermally grown Y2O3: Eu by europium concentration adjustment. J Rare Earth. 2019;37(11):1206.

    Article  CAS  Google Scholar 

  26. Engels J, Houben A, Rasinski M, Linsmeier C. Hydrogen saturation and permeation barrier performance of yttrium oxide coatings. Fusion Eng Des. 2016;124:1140.

    Article  Google Scholar 

  27. Mao Y, Engels J, Houben A, Rasinski M, Steffens J, Terra A, Linsmeier C, Coenen JW. The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: process and microstructure. Nucl Mater Energy. 2017;10(C):1.

    Google Scholar 

  28. Wang L. Effect of thermal cycles on structure and deuterium permeation of Al2O3 coating prepared by MOD method. Fusion Eng Des. 2020;159:111750.

    Article  Google Scholar 

  29. Levchuk D, Koch F, Maier H, Bolt H. Deuterium permeation through Eurofer and α-alumina coated Eurofer. J Nucl Mater. 2004;328(2–3):103.

    Article  CAS  Google Scholar 

  30. Marchi CS, Somerday BP, Robinson SL. Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. Int J Hydrog Energy. 2007;32(1):100.

    Article  Google Scholar 

  31. Kanehashi S, Kusakabe A, Sato S, Nagai K. Analysis of permeability; solubility and diffusivity of carbon dioxide; oxygen; and nitrogen in crystalline and liquid crystalline polymers. J Membrane Sci. 2010;365(1–2):40.

    Article  CAS  Google Scholar 

  32. Göpel W, Rocker G, Feierabend R. Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2. Phy Rev B. 1983;28(6):3427.

    Article  Google Scholar 

  33. Wang C, Wang W, He K, Liu S. Pr-doped In2O3 nanocubes induce oxygen vacancies for enhancing triethylamine gas-sensing performance. Front Mater Sci. 2019;13(2):174.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2016YFB0600102 and 2016YFB0600103) and the National Natural Science Foundation of China (No. 51671034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-He Yu or Lei Hao.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WJ., Yu, QH., Liu, XP. et al. Microstructure and deuterium resistance of Al2O3/Y2O3 composite coating with different annealing atmospheres. Rare Met. 41, 877–882 (2022). https://doi.org/10.1007/s12598-021-01797-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01797-y

Navigation