Skip to main content

Advertisement

Log in

Synchrotron X-ray diffraction characterization of phase transformations during thermomechanical processing of a Ti38Nb alloy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The phase transformations during thermomechanical processing can be employed to optimize mechanical properties of β-type Ti alloys. However, such understandings are still lacking for the alloy consisting of dual β + α″ phases in solution-treated and quenched state. In this paper, the phase transformations in a Ti38Nb model alloy subjected to different thermomechanical processing were investigated by using synchrotron X-ray diffraction (SXRD) experiments, and their influence on the Young’s modulus was discussed. The results indicated that high-density dislocations introduced by cold rolling still existed after annealing at temperatures lower than 573 K, which can decrease the martensitic transformation start temperature to below room temperature. With annealing temperatures increasing, the α″ → β, β → ωiso, and β → α phase transformations occurred successively. At annealing temperature of 473 K, the specimen consisted of a trace of α″ and ω phases as well as dominant β phase which was kept to room temperature by the high density of dislocations, rather than by the chemical stabilization. As a result, an ultralow Young’s modulus of 25.9 GPa was realized. Our investigation not only provides in-depth understandings of the phase transformations during thermomechanical processing of β-type Ti alloys, but also sheds light on designing biomedical Ti alloys with ultralow Young’s modulus.

Graphic abstract

抽象

β钛合金在热机械处理过程中的相变可以用来优化其机械性能。然而对于固溶态为β + α″的双相合金, 其相变和性能关系的研究尚且缺乏。本文利用同步辐射X射线技术研究了Ti38Nb合金在不同热机械处理状态下的相组成, 并讨论了其对杨氏模量的影响规律。结果表明冷轧引入的高密度位错在低于573 K退火后仍然存在, 这可以将马氏体相变点降至室温以下。随退火温度的升高, α″ → β, β → ωiso和β → α相变依次发生。当退火温度为473 K时, 样品中主要由β相组成并含有少量α″和ω相。这其中β相是通过高密度位错保留至室温而非化学成分稳定化。因此合金可以实现25.9 GPa的超低杨氏模量。本研究不但对β钛合金在热机械处理过程中的相变行为提供了深入理解, 而且为超低杨氏模量生物医用钛合金的开发提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.

    Article  CAS  Google Scholar 

  2. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.

    Article  CAS  Google Scholar 

  3. Chen LY, Cui YW, Zhang LC. Recent development in beta titanium alloys for biomedical applications. Metals. 2020;10(9):1139.

    Article  CAS  Google Scholar 

  4. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30.

    Article  Google Scholar 

  5. Pellizzari M, Jam A, Tschon M, Fini M, Lora C, Benedetti M. A 3D-printed ultra-low Young’s modulus β-Ti alloy for biomedical applications. Materials. 2020;13(12):2792.

    Article  CAS  Google Scholar 

  6. Sumner DR, Turner TM, Igloria R, Urban RM, Galante JO. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech. 1998;31(10):909.

    Article  CAS  Google Scholar 

  7. Nagoshi T, Yasuda T, Otaki N, Tahara M, Hosoda H, Sone M. Evaluation of the shape memory effect by micro-compression testing of single crystalline Ti-27Nb Ni-free alloy. Materials. 2020;13(1):110.

    Article  CAS  Google Scholar 

  8. Zhao X, Niinomi M, Nakai M, Hieda J. Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater. 2012;8(5):1990.

    Article  CAS  Google Scholar 

  9. Zhou YL, Niinomi M. Microstructures and mechanical properties of Ti–50mass% Ta alloy for biomedical applications. J Alloys Compd. 2008;466(1):535.

    Article  CAS  Google Scholar 

  10. Hanada S, Masahashi N, Jung TK, Miyake M, Sato YS, Kokawa H. Effect of swaging on Young's modulus of β Ti–33.6Nb–4Sn alloy. J Mech Behav Biomed Mater. 2014;32:310.

    Article  CAS  Google Scholar 

  11. Meng Q, Wang K, Li H, Guo S, Wei F, Qi J, Sui Y, Zhao X. Single crystal shear moduli of β-phase stabilized by thermomechanical treatment in TiNbSn alloys with ultralow elastic modulus. Mater Lett. 2021;285:129103.

    Article  CAS  Google Scholar 

  12. Meng Q, Guo S, Liu Q, Hu L, Zhao X. A β-type TiNbZr alloy with low modulus and high strength for biomedical applications. Prog Nat Sci. 2014;24(2):157.

    Article  CAS  Google Scholar 

  13. Marczewski M, Miklaszewski A, Maeder X, Jurczyk M. Crystal structure evolution, microstructure formation, and properties of mechanically alloyed ultrafine-grained Ti-Zr-Nb alloys at 36≤Ti≤70 (at%). Materials. 2020;13(3):587.

    Article  CAS  Google Scholar 

  14. Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials. 2003;24(16):2673.

    Article  CAS  Google Scholar 

  15. Li BQ, Li CL, Wang ZX, Lu X. Preparation of Ti–Nb–Ta–Zr alloys for load-bearing biomedical applications. Rare Met. 2019;38(6):571.

    Article  CAS  Google Scholar 

  16. Hao YL, Li SJ, Sun SY, Zheng CY, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–79Sn for biomedical applications. Acta Biomater. 2007;3(2):277.

    Article  CAS  Google Scholar 

  17. Li X, Ye S, Yuan X, Yu P. Fabrication of biomedical Ti-24Nb-4Zr-8Sn alloy with high strength and low elastic modulus by powder metallurgy. J Alloys Compd. 2019;772:968.

    Article  CAS  Google Scholar 

  18. Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.

    Article  CAS  Google Scholar 

  19. Moffat DL, Larbalestier DC. The compctition between martensite and omega in quenched Ti-Nb alloys. Metall Trans A. 1988;19(7):1677.

    Article  Google Scholar 

  20. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006;54(9):2419.

    Article  CAS  Google Scholar 

  21. Qu WT, Gong H, Wang J, Nie YS, Li Y. Martensitic transformation, shape memory effect and superelasticity of Ti–xZr–(30–x)Nb–4Ta alloys. Rare Met. 2019;38(10):965.

    Article  CAS  Google Scholar 

  22. Nejezchlebová J, Janovská M, Sedlák P, Šmilauerová J, Stráský J, Janeček M, Seiner H. Elastic constants of β-Ti15Mo. J Alloys Compd. 2019;792:960.

    Article  Google Scholar 

  23. Devaraj A, Nag S, Srinivasan R, Williams REA, Banerjee S, Banerjee R, Fraser HL. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys. Acta Mater. 2012;60(2):596.

    Article  CAS  Google Scholar 

  24. Ng HP, Devaraj A, Nag S, Bettles CJ, Gibson M, Fraser HL, Muddle BC, Banerjee R. Phase separation and formation of omega phase in the beta matrix of a Ti–V–Cu alloy. Acta Mater. 2011;59(8):2981.

    Article  CAS  Google Scholar 

  25. Hao YL, Yang R, Niinomi M, Kuroda D, Zhou YL, Fukunaga K, Suzuki A. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Metall Mater Trans A. 2002;33(10):3137.

    Article  Google Scholar 

  26. Ho WF, Ju CP, Lin JH. Structure and properties of cast binary Ti-Mo alloys. Biomaterials. 1999;20(22):2115.

    Article  CAS  Google Scholar 

  27. Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Mori H, Nakajima H. Low Young’s modulus of Ti–Nb–Ta–Zr alloys caused by softening in shear moduli c′ and c44 near lower limit of body-centered cubic phase stability. Acta Mater. 2010;58(20):6790.

    Article  CAS  Google Scholar 

  28. Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 2006;55(5):477.

    Article  CAS  Google Scholar 

  29. Zhang K, Dong HB, Jiang ZY, Shi S, Liu HX. Effects of cold-deformation and aging process on microstructure and properties of TB8 titanium alloy. Chin J Rare Met. 2019;43(9):904.

    Google Scholar 

  30. Sun F, Hao YL, Nowak S, Gloriant T, Laheurte P, Prima F. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at%) alloys. J Mech Behav Biomed Mater. 2011;4(8):1864.

    Article  CAS  Google Scholar 

  31. Kuroda PAB, Lourenço ML, Correa DRN, Grandini CR. Thermomechanical treatments influence on the phase composition, microstructure, and selected mechanical properties of Ti–20Zr–Mo alloys system for biomedical applications. J Alloys Compd. 2020;812:152108.

    Article  CAS  Google Scholar 

  32. Li HJ, Yu Y, Song XY, Ye WJ, Hui SX. Thermal deformation behavior and processing map of a new type of Ti-6554 alloy. Chin J Rare Met. 2020;44(5):462.

    Google Scholar 

  33. Sheremetyev V, Kudryashova A, Dubinskiy S, Galkin S, Prokoshkin S, Brailovski V. Structure and functional properties of metastable beta Ti-18Zr-14Nb (at.%) alloy for biomedical applications subjected to radial shear rolling and thermomechanical treatment. J Alloys Compd. 2018;737:678.

    Article  CAS  Google Scholar 

  34. Mantani Y, Tajima M. Phase transformation of quenched α″ martensite by aging in Ti–Nb alloys. Mater Sci Eng A. 2006;438–440:315.

    Article  Google Scholar 

  35. Lopes ESN, Cremasco A, Afonso CRM, Caram R. Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Mater Charact. 2011;62(7):673.

    Article  CAS  Google Scholar 

  36. Ping DH, Cui CY, Yin FX, Yamabe-Mitarai Y. TEM investigations on martensite in a Ti–Nb-based shape memory alloy. Scr Mater. 2006;54(7):1305.

    Article  CAS  Google Scholar 

  37. Zhu Y, Meng Q, Guo S, Qi L, Xiao W, Ping D, Zhao X. Anomalous phase stability of surface and interior in a metastable Ti-Nb-Zr alloy. Mater Lett. 2016;169:210.

    Article  CAS  Google Scholar 

  38. Zhao CH, Kisslinger K, Huang XJ, Lu M, Camino F, Lin CH, Yan HF, Nazaretski E, Chu Y, Ravel B, Liu MZ, Chen-Wiegart YCK. Bi-continuous pattern formation in thin films via solid-state interfacial dealloying studied by multimodal characterization. Mater Horizons. 2019;6(10):1991.

    Article  CAS  Google Scholar 

  39. Zhu ZW, Xiong CY, Wang J, Li RG, Ren Y, Wang YD, Li Y. In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti-30Zr-10Nb alloy. Acta Mater. 2018;154:45.

    Article  CAS  Google Scholar 

  40. Zhao C, Wada T, De Andrade V, Gürsoy D, Kato H, Chen-Wiegart YCK. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy. 2018;52:381.

    Article  CAS  Google Scholar 

  41. Lin CH, Topsakal M, Sun K, Bai J, Zhao C, Dooryhee E, Northrup P, Gan H, Lu D, Stavitski E, Chen-Wiegart YCK. Operando structural and chemical evolutions of TiS2 in Na-ion batteries. J Mater Chem A. 2020;8(25):12339.

    Article  CAS  Google Scholar 

  42. Prescher C, Prakapenka VB. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res. 2015;35(3):223.

    Article  CAS  Google Scholar 

  43. Chen W, Sun Q, Xiao L, Sun J. Deformation-induced grain refinement and amorphization in Ti-10V-2Fe-3Al alloy. Metall Mater Trans A. 2012;43(1):316.

    Article  CAS  Google Scholar 

  44. Yang Y, Li GP, Cheng GM, Li YL, Yang K. Multiple deformation mechanisms of Ti–22.4Nb–0.73Ta–2.0Zr–1.34O alloy. Appl Phys Lett. 2009;94(6):061901.

    Article  Google Scholar 

  45. Meng Q, Guo S, Ren X, Xu H, Zhao X. Possible contribution of low shear modulus C44 to the low Young’s modulus of Ti-36Nb-5Zr alloy. Appl Phys Lett. 2014;105(13):131907.

    Article  Google Scholar 

  46. Guo S, Meng Q, Zhao X, Wei Q, Xu H. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Sci Rep. 2015;5:14688.

    Article  CAS  Google Scholar 

  47. Meng Q, Li H, Wang K, Guo S, Wei F, Qi J, Sui Y, Shen B, Zhao X. In situ synchrotron X-ray diffraction investigations of the nonlinear deformation behavior of a low modulus β-Type Ti36Nb5Zr alloy. Metals. 2020;10(12):1619.

    Article  CAS  Google Scholar 

  48. Matsumoto H, Watanabe S, Hanada S. Beta TiNbSn alloys with low Young’s modulus and high strength. Mater Trans. 2005;46(5):1070.

    Article  CAS  Google Scholar 

  49. Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Nakajima H. Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals. Acta Mater. 2008;56(12):2856.

    Article  CAS  Google Scholar 

  50. Al-Zain Y, Kim HY, Hosoda H, Nam TH, Miyazaki S. Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Mater. 2010;58(12):4212.

    Article  CAS  Google Scholar 

  51. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511.

    Article  CAS  Google Scholar 

  52. Meng Q, Zhang J, Huo Y, Sui Y, Zhang J, Guo S, Zhao X. Design of low modulus β-type titanium alloys by tuning shear modulus C44. J Alloys Compd. 2018;745:579.

    Article  CAS  Google Scholar 

  53. Zheng Y, Alam T, Banerjee R, Banerjee D, Fraser HL. The influence of aluminum and oxygen additions on intrinsic structural instabilities in titanium-molybdenum alloys. Scr Mater. 2018;152:150.

    Article  CAS  Google Scholar 

  54. Choudhuri D, Zheng Y, Alam T, Shi R, Hendrickson M, Banerjee S, Wang Y, Srinivasan SG, Fraser H, Banerjee R. Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy. Acta Mater. 2017;130:215.

    Article  CAS  Google Scholar 

  55. Bönisch M, Calin M, Waitz T, Panigrahi A, Zehetbauer M, Gebert A, Skrotzki W, Eckert J. Thermal stability and phase transformations of martensitic Ti-Nb alloys. Sci Technol Adv Mater. 2013;14(5):055004.

    Article  Google Scholar 

  56. Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL. ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy. Acta Mater. 2009;57(7):2136.

    Article  CAS  Google Scholar 

  57. Guo S, Zhang J, Cheng X, Zhao X. A metastable β-type Ti–Nb binary alloy with low modulus and high strength. J Alloys Compd. 2015;644:411.

    Article  CAS  Google Scholar 

  58. Guo S, Shi Y, Liu G, Wu R, Luo R, Peng CT, Meng Q, Cheng X, Zhao X. Design and fabrication of a (β+α′′) dual-phase Ti-Nb-Sn alloy with linear deformation behavior for biomedical applications. J Alloys Compd. 2019;805:517.

    Article  CAS  Google Scholar 

  59. Guo S, Meng Q, Liao G, Hu L, Zhao X. Microstructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulusMicrostructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulus. Prog Nat Sci. 2013;23(2):174.

    Article  Google Scholar 

  60. Meng Q, Liu Q, Guo S, Zhu Y, Zhao X. Effect of thermo-mechanical treatment on mechanical and elastic properties of Ti–36Nb–5Zr alloy. Prog Nat Sci. 2015;25(3):229.

    Article  CAS  Google Scholar 

  61. Bönisch M, Panigrahi A, Calin M, Waitz T, Zehetbauer M, Skrotzki W, Eckert J. Thermal stability and latent heat of Nb–rich martensitic Ti-Nb alloys. J Alloys Compd. 2017;697:300.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2017QNA04). Qing-Kun Meng thanks Prof. Yu-chen Karen Chen-Wiegart at Stony Brook University and Dr. Jianming Bai, Dr. Hui Zhong and Dr. Sanjit Ghose at National Synchrotron Light Source II for their assistance in the synchrotron experiments. This research used 28-ID-2 (XPD) beamline of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Ma or Ji-Qiu Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, QK., Li, H., Zhao, CH. et al. Synchrotron X-ray diffraction characterization of phase transformations during thermomechanical processing of a Ti38Nb alloy. Rare Met. 40, 3269–3278 (2021). https://doi.org/10.1007/s12598-021-01763-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01763-8

Keywords

Navigation