Skip to main content
Log in

Microstructure evolution and mechanical properties of a novel γ′ phase-strengthened Ir-W-Al-Th superalloy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The present work introduces a novel γ′ phase-strengthened Ir-W-Al-Th superalloy for ultrahigh-temperature applications. First, the as-cast microstructure and phase transformation of Ir-13W-6Al-0.15Th (at%) alloy during solid solution and aging were investigated. Phase transformation was observed during heat treatment. The primary γ′ phase disappeared via the redissolution of γ′ → γ at 1800 °C. The recrystallization took place at 1450 °C and very fine equiaxed γ′/γ grains formed after 240 h. The cold-rolled microstructure indicated that the room-temperature γ phase was brittle and cracks mainly emerged along grain boundaries. Ir-13W-6Al-0.15Th alloy exhibited a higher nanohardness than other Ir-based superalloys and pure Ir, which can be attributed to the solid solution and precipitation (γ′) strengthening. In addition, the as-cast Ir-13W-6Al-0.15Th alloy shows a medium room-temperature compressive yield strength and good ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hosoda H, Takahashi T, Takehara M, Kingetsu T, Masumoto H. Phase stability and mechanical properties of IrAl alloys. Mater Trans Jim. 1997;38(10):871.

    Article  CAS  Google Scholar 

  2. Sha JB, Yamabe-Mitarai Y, Harada H. Microstructural evaluation and mechanical properties of Ir-Hf-Zr ternary alloys at room and high temperatures. Intermetallics. 2006;14(10–11):1364.

    Article  CAS  Google Scholar 

  3. Franco-Ferreira EA, Goodwin GM, George TG, Rinehart GH. Long life radioisotopic power sources encapsulated in platinum metal alloys. Platin Met Rev. 1997;4:154.

    Google Scholar 

  4. Cockayne B. Czochralski growth of oxide single crystals. Platin Met Rev. 1974;2:86.

    Google Scholar 

  5. Tingliang L. Production and characterisation of noble metal single crystals in Russia. Precious Met. 1998;04:61.

    Google Scholar 

  6. Yamabe Y, Koizumi Y, Murakami H, Ro Y, Maruko T, Harada H. Development of Ir-base refractory superalloys. Scripta Mater. 1996;35(2):211.

    Article  CAS  Google Scholar 

  7. Yamabe-Mitarai Y, Ro Y, Harada H, Maruko T. Ir-base refractory superalloys for ultra-high temperatures. Metall Mater Trans A. 1998;29(2):537.

    Article  Google Scholar 

  8. Pan Y, Li Y, Zheng Q. Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of Nb-Ir based compounds from first-principles calculations. J Alloy Compd. 2019;789:860.

    Article  CAS  Google Scholar 

  9. Pan Y, Pu D, Jia Y. Adjusting the correlation between the oxidation resistance and mechanical properties of Pt-based thermal barrier coating. Vacuum. 2020;172:109067.

    Article  CAS  Google Scholar 

  10. Danying L, He Z, Guoyi LV. Thermoelectric properties and application research of IrRh40-IrRh10 thermocouples. Metrol Meas Technol. 2015;35(2):49.

    Google Scholar 

  11. Pan Y, Lin Y, Liu G, Zhang J. Influence of transition metal on the mechanical and thermodynamic properties of IrAl thermal barrier coating. Vacuum. 2020;174:109203.

    Article  CAS  Google Scholar 

  12. Jiang YS, Chen SC, Xiao FM. Electrochemical properties of IrO2-SnO2 coated titanium electrodes in solution containing manganese ion. Chin J Rare Met. 2020;44(10):1063.

    Google Scholar 

  13. Liu CT, Inouye H, Schaffhauser AC. Effect of thorium additions on metallurgical and mechanical properties of Ir-0.3 pct W alloys. Mater Trans A. 1981;12(6):993.

    Article  CAS  Google Scholar 

  14. Yamabe-Mitarai Y, Nakazawa S, Harada H. Creep behavior of Ir-Nb and Ir-Zr refractory superalloys. Jsme Int J A. 2002;45(1):2.

    Article  CAS  Google Scholar 

  15. Yamabe-Mitarai Y, Gu YF, Harada H. Two-phase iridum-based refractory superalloys. Platin Met Rev. 2002;46(2):74.

    CAS  Google Scholar 

  16. Gu YF, Yamabe-Mitarai Y, Harada H. Ultra-high-temperature deformation of polycrystalline and directionally solidified L12 intermetallic compound Ir3Nb. Intermetallics. 2003;11(1):57.

    Article  CAS  Google Scholar 

  17. Lee KN, Worrell WL. High-temperature oxidation behavior of iridium-based alumina-forming ternary intermetallics. Oxid Met. 1994;41(1–2):37.

    Article  CAS  Google Scholar 

  18. Omori T, Makino K, Shinagawa K, Ohnuma I, Kainuma R, Ishida K. Phase equilibria and mechanical properties of the Ir-W-Al system. Intermetallics. 2014;55:154.

    Article  CAS  Google Scholar 

  19. Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science. 2006;312(5770):90.

    Article  CAS  Google Scholar 

  20. Jiang C, Du Y. Thermodynamic and mechanical stabilities of gamma’-Ir-3(Al, W). J Appl Phys. 2011;109(2):10.

    Article  Google Scholar 

  21. Heatherly L, George EP. Grain-boundary segregation of impurities in iridium and effects on mechanical properties. Acta Mater. 2001;49(2):289.

    Article  CAS  Google Scholar 

  22. Pan Y, Wen M, Wang L, Wang X, Lin YH, Guan WM. Iridium concentration driving the mechanical properties of iridium-aluminum compounds. J Alloys Compd. 2015;648:771.

    Article  CAS  Google Scholar 

  23. Subramaniam PR, Laughlin DE. Phase diagrams of binary tungsten alloys. Indian Institute of Metals Calcutta. 1991;76.

  24. George EP, Mckamey CG, Ohriner EK, Lee EH. Deformation and fracture of iridium: microalloying effects. Mater Sci Eng A. 2001;319:466.

    Article  Google Scholar 

  25. Luo R, Zheng Q, Zhu JJ, Guo S, Li DS, Xu GF, Cheng XN. Dynamic recrystallization behavior of Fe-20Cr-30Ni-0.6Nb-2Al-Mo alloy. Rare Met. 2019;38(2):181.

    Article  CAS  Google Scholar 

  26. Wang J, Dong JX, Zhang MC. Nucleation mechanisms of dynamic recrystallization for G3 alloy during hot compression. Rare Met. 2016;35(7):543.

    Article  Google Scholar 

  27. Chen X, Qi YG, Shi XN, Xie BC, Ning YQ. Behaviors and model of dynamic recrystallization of nickel-based superalloy IN718Plus. Chin J Rare Met. 2019;43(12):1260.

    Google Scholar 

  28. Gu YF, Yamabe-Mitarai Y, Harada H. Compression properties of B-doped Ir-15Nb two-phase refractory superalloys. Scripta Mater. 1999;41(10):1079.

    Article  CAS  Google Scholar 

  29. Huang C, Yamabe-Mitarai Y, Nakazawa S. Mechanical properties of Ir-Nb-Pt-Al quaternary alloys. Mater Lett. 2004;58(3/4):483.

    Article  CAS  Google Scholar 

  30. Chen H, Su Y, Luo L. Mechanical properties of as-cast full lamellar Ti-46Al-0.5W-0.5Si alloy at room temperature. Rare Met Eng. 2014;43(2):331.

    CAS  Google Scholar 

  31. Liu Y, Zhang DC, Chen JL, Wu F, Luo XM. Investigation on microstructure and fracture mechanism of iridium sheet at room temperature. Precious Met. 2015;36(3):42.

    Google Scholar 

  32. McKamey CG, Gubbi AN, Lin Y, George EP. Grain-growth behavior and low-pressure oxygen compatibility of an Ir-0.3 wt%W alloy. J Alloys Compd. 1996;244(1–2):183.

    Google Scholar 

  33. Wang FJ, Qian YY, Ma X. Measurement of mechanical properties of Sn-Ag-Cu bulk solder BGA solder joint using nanoindentation. Acta Metall Sin. 2005;41(7):775.

    Google Scholar 

  34. Peng J, Long ZL, Wei HQ, Li XA, Zhang ZC. Creep behavior of a Fe-based bulk amorphous alloy using nanoindentation. Acta Phys Sinica. 2009;58(06):4059.

    Article  Google Scholar 

  35. Cawkwell MJ, Nguyen-Manh D, Woodward C, Pettifor DG, Vitek V. Origin of brittle cleavage in iridium. Science. 2005;309(5737):1059.

    Article  CAS  Google Scholar 

  36. Yamabe-Mitarai Y, Aoki H, Hill P, Harada H. High-temperature mechanical properties of Ir-Al alloys. Scripta Mater. 2003;48(5):565.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the fund of the National Key R & D Program of China (No. 2017YFB0305500) and the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No. SKL-SPM-2018010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-Ren Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, JR., Fang, X., Liu, Y. et al. Microstructure evolution and mechanical properties of a novel γ′ phase-strengthened Ir-W-Al-Th superalloy. Rare Met. 40, 3588–3597 (2021). https://doi.org/10.1007/s12598-020-01682-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01682-0

Keywords

Navigation