Skip to main content
Log in

Dielectric relaxation and conduction behaviors of Aurivillius Na0.5Bi4.5Ti4O15 ceramics with Na doping

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aurivillius Na0.5Bi4.5Ti4O15 and Bi4Ti3O12 compounds were synthesized via solid-state reaction technique. X-ray powder diffraction study confirmed monophasic four-layered Na0.5Bi4.5Ti4O15 and three-layered Bi4Ti3O12 ceramics. Dielectric relaxation and conduction behaviors of Na-contained Na0.5Bi4.5Ti4O15 ceramics were thoroughly investigated in a large scale of temperature of 30–650 °C and frequency of 40 Hz–1 MHz. In addition, comparative studies of both the compounds were discussed. Impedance and modulus analyses revealed a single relaxation behavior in Na0.5Bi4.5Ti4O15 compound which was originated from the grain’s interior with grain resistance of 2.189 × 105 Ω and capacitance of 4.268 × 10−10 F at 570 °C. While in Bi4Ti3O12 ceramic the relaxation was due to the contributions of grain and grain boundaries. Alternating current (AC) conductivity analysis revealed the presence of two different conduction regions in both the compounds. Activation energies for the two different conduction mechanisms, i.e., in low-temperature region and in high-temperature region were calculated to be ~ 0.23 and ~ 1.27 eV at 1 kHz for Na0.5Bi4.5Ti4O15 compound and ~ 0.43 eV and ~ 0.97 eV at 1 kHz for Bi4Ti3O12 compound, respectively. The present study of dielectric relaxation and conduction behaviors would be helpful for further investigations of Na0.5Bi4.5Ti4O15-related Aurivillius compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aurivillus B. Mixed bismuth oxide with layer lattices II Structure of Bi4Ti3O12. Arkiv Kemi. 1949;1:499.

    Google Scholar 

  2. Subbarao EC. A family of ferroelectric bismuth compounds. J Phys Chem Solids. 1962;23(6):665.

    Article  CAS  Google Scholar 

  3. Zhang SJ, Yu FP. Piezoelectric materials for high temperature sensors. J Am Ceram Soc. 2011;94(10):3153.

    Article  CAS  Google Scholar 

  4. Pardo L, Castro A, Millan P, Alemany C, Jimenez R, Jimenez B. (Bi3TiNbO9)x(SrBi2Nb2O9)1–x Aurivillius type structure piezoelectric ceramics obtained from mechanochemically activated oxides. Acta Mater. 2000;48(9):2421.

    Article  CAS  Google Scholar 

  5. Wang CM, Wang JF, Zhang S, Shrout TR. Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature. J Appl Phys. 2009;105(9):094110.

    Article  Google Scholar 

  6. Peng Z, Chen Q, Wang Y, Xin D, Xian D, Zhu J. Enhancement of piezoelectric properties of (LiCePr)-multidoped CaBi2Nb2O9 high temperature ceramics. Mater Lett. 2013;107:14.

    Article  CAS  Google Scholar 

  7. Kendall KR, Thomas JK, Loye HCZ. Synthesis and ionic conductivity of a new series of modified Aurivillius phases. Chem Mater. 1995;7(1):50.

    Article  CAS  Google Scholar 

  8. Goodenough JB. Oxide-ion electrolytes. Annu Rev Mater Res. 2003;33:91.

    Article  CAS  Google Scholar 

  9. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature. 1999;401(6754):682.

    Article  CAS  Google Scholar 

  10. Cheng C, Tang M, Ye Z, Zhou Y, Zheng X, Hu Z, Hu H. Microstructure and ferroelectric properties of dysprosium-doped bismuth titanate thin films. Mater Lett. 2007;61(19–20):4117.

    Article  CAS  Google Scholar 

  11. Long C, Chang Q, Wu Y, He W, Li Y, Fan H. New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5-xTi4O15: crystal structures, electrical properties and conduction behaviors. J Mater Chem C. 2015;3(34):8852.

    Article  CAS  Google Scholar 

  12. Hiruma Y, Nagata H, Takenaka T. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J Appl Phys. 2009;105(8):084112.

    Article  Google Scholar 

  13. Schutz D, Deluca M, Krauss W, Feteira A, Jackson T, Reichmann K. Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater. 2012;22(11):2285.

    Article  Google Scholar 

  14. Park BH, Hyun SJ, Bu SD, Noh TW. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl Phys Lett. 1999;74(13):1907.

    Article  CAS  Google Scholar 

  15. Li L, Yuan H, Huang P, Zhang Y, Xu Z. Enhanced piezoelectricity and excellent thermal stabilities in Nb–Mg co-doped CaBi4Ti4O15 Aurivillius high Curie temperature ceramics. Cerem Int. 2020;46(2):2178.

    Article  CAS  Google Scholar 

  16. Prasetyo A, Mihailova B, Suendo V, Nugroho AA, Ismunandar. The effect of the A-Site cation on the structural transformations in ABi4Ti4O15 (A = Ba, Sr): Raman scattering studies. J Solid State Chem 2020;283:121131.

  17. Gao D, Kwok KW, Lin D. Microstructure, piezoelectric and ferroelectric properties of Mn-added Na0.5Bi4.5Ti4O15 ceramics. Curr Appl Phys. 2011;11(3):S124.

    Article  Google Scholar 

  18. Du H, Shi X. Dielectric and piezoelectric properties of barium-modified Aurivillius-type Na0.5Bi4.5Ti4O15. J Phys Chem Solids. 2011;72(11):1279.

    Article  CAS  Google Scholar 

  19. Kumar S, Varma KBR. Structural, dielectric and ferroelectric properties of four-layer Aurivillius phase Na0.5La0.5Bi4Ti4O15. Mat Sci Eng B. 2010;172(2):177.

    Article  CAS  Google Scholar 

  20. Kim YM, Morozovska A, Eliseev E, Oxley MP, Mishra R, Selbach SM, Grande T, Pantelides ST, Kalinin SV, Borisevich AY. Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. Nat Mater. 2014;13(11):1019.

    Article  CAS  Google Scholar 

  21. Liang P, Li Y, Zhao Y, Wei L, Yang Z. Origin of giant permittivity and high-temperature dielectric anomaly behavior in Na0.5Y0.5Cu3Ti4O12 ceramics. J Appl Phys. 2013;113(22):224102.

    Article  Google Scholar 

  22. Kim JW, Raghavan CM, Kim SS. Structural, electrical and ferroelectric properties of acceptor-doped Na0.5Bi4.5Ti4O15 thin films prepared by a chemical solution deposition method. Ceram Int. 2015;41(1):1567.

    Article  CAS  Google Scholar 

  23. Li M, Pietrowski MJ, Souza RAD, Zhang HR, Reaney IM, Cook SN, Kilner JA, Sinclair DC. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater. 2014;13(1):31.

    Article  CAS  Google Scholar 

  24. Li Z, Chan HLW, Li Y, Kwok KW, Choy SH. Anisotropic properties and crystal structure of ferroelectric Na0.5Bi4.5Ti4O15. J Alloys Compd. 2010;506(1):70.

    Article  CAS  Google Scholar 

  25. Shulman HS, Damjanovic D, Setter N. Niobium doping and dielectric anomalies in bismuth titanate. J Am Ceram Soc. 2000;83(3):528.

    Article  CAS  Google Scholar 

  26. Jonscher AK. A new understanding of the dielectric relaxation of solids. J Mater Sci. 1981;16(8):2037.

    Article  CAS  Google Scholar 

  27. Saha S, Sinha TP. Dielectric relaxation in SrFe1/2Nb1/2O3. J Appl Phys. 2006;99(1):014109.

    Article  Google Scholar 

  28. Tirupati P, Mandal SK, Chandra A. Effect of oxygen annealing on the multiferroic properties of Ca2+ doped BiFeO3 nanoceramics. J Appl Phys. 2014;116(24):244105.

    Article  Google Scholar 

  29. Barsoukov E, Macdonald JR. Impedance spectroscopy: Theory, Experiment, and Applications. 2nd ed. New Jersey: Wiley; 2005. 129.

    Book  Google Scholar 

  30. Sinclair DC, West AR. Impedance spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys. 1989;66(8):3850.

    Article  CAS  Google Scholar 

  31. Li Z, Fan H. Relaxation associated with the synergetic oxygen vacancies and electrons in (Ba1-xBix)0.9Sr0.1TiO3-σ ceramics. J Appl Phys. 2010;108(3):034103.

    Article  Google Scholar 

  32. Bidault O, Goux P, Kchikech M, Belkaoummi M, Maglione M. Space-charge relaxation in perovskites. Phys Rev B. 1994;49(12):7868.

    Article  CAS  Google Scholar 

  33. Bai W, Chen G, Zhu JY, Yang J, Lin T, Meng XJ, Tang XD, Duan CG, Chu JH. Dielectric responses and scaling behaviors in Aurivillius Bi6Ti3Fe2O18 multiferroic thin films. Appl Phys Lett. 2012;100(8):082902.

    Article  Google Scholar 

  34. Rout SK, Hussian A, Lee JS, Kim IW, Woo SI. Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method. J Alloys Compd. 2009;477(1–2):706.

    Article  CAS  Google Scholar 

  35. Li W, Chen A, Lu X, Zhu J. Collective domain-wall pinning of oxygen vacancies in bismuth titanate ceramics. J App Phys. 2005;98(2):024109.

    Article  Google Scholar 

  36. Pandit P, Satapathy S, Gupta PK. Effect of La substitution on conductivity and dielectric properties of Bi1-xLaxFeO3 ceramics: an impedance spectroscopy analysis. Phys B. 2011;406(13):2669.

    Article  CAS  Google Scholar 

  37. Ang C, Yu Z, Cross LE. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys Rev B. 2000;62(1):228.

    Article  Google Scholar 

  38. Osak W, Tkacz-hmiech K, Osak A. Electrical transport in Pb[(Ni1/3Sb2/3)xTiyZrz] + 0.3% MnO. Mater Sci Eng B. 1997;45(1–3):1.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (Nos. 51972029 and 51772029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fida Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, F., Li, JB., Ahmed, P. et al. Dielectric relaxation and conduction behaviors of Aurivillius Na0.5Bi4.5Ti4O15 ceramics with Na doping. Rare Met. 40, 1247–1254 (2021). https://doi.org/10.1007/s12598-020-01634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01634-8

Keywords

Navigation