Skip to main content
Log in

Self-assembled graphene oxide/polyethyleneimine films as high-performance quartz crystal microbalance humidity sensors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As humidity is one of the most widely demanded environmental parameters, the precision of its detection is significant. An advanced humidity sensor will improve the validity of the humidity monitoring system. In this study, a facile chemical layer-by-layer self-assembly (CLS) method was developed for fabricating graphene oxide (GO)/polyethyleneimine (PEI) multilayer films. Owing to the chemical bonding between the PEI and GO, and the intrinsic stickiness of the PEI, layered films with different numbers of layers were successfully prepared using the CLS method and confirmed through ultraviolet–visible (UV–Vis) spectroscopy and the mass loading of quartz crystal microbalance (QCM). Morphological measurements revealed that the roughness and thickness of the films increased exponentially with the number of bilayers. The GO/PEI films were deposited on QCM electrodes using the CLS method to produce the humidity sensors. The humidity measurement results showed a high sensitivity (37.84 Hz/%RH) and rapid response/recovery (< 5 s/8 s) of the optimal sensor, which was superior to that of recently developed QCM sensors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen Z, Lu C. Humidity sensors: a review of materials and mechanisms. Sens Lett. 2005;3(4):274.

    CAS  Google Scholar 

  2. Fang X, Hu L, Ye C, Zhang L. One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors. Pure Appl Chem. 2010;82(11):2185.

    CAS  Google Scholar 

  3. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.

    CAS  Google Scholar 

  4. Xu X, Chen J, Cai S, Long Z, Zhang Y, Su L, He S, Tang C, Liu P, Peng H, Fang X. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater. 2018;30(43):1803165.

    Google Scholar 

  5. Cai S, Xu X, Yang W, Chen J, Fang X. Materials and designs for wearable photodetectors. Adv Mater. 2019;31(18):1808138.

    Google Scholar 

  6. Xu SY, Wang ZH, Gui LJ. Contact mode thermal sensors for ultrahigh-temperature region of 2000–3500 K. Rare Met. 2019;38(8):713.

    CAS  Google Scholar 

  7. Sasai R, Morita M. Luminous relative humidity sensing by anionic fluorescein dyes incorporated into layered double hydroxide/1-butanesulfonate hybrid materials. Sens Actuators B Chem. 2017;238:702.

    CAS  Google Scholar 

  8. Zhang DZ, Liu JJ, Xia BK. Layer-by-layer self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive humidity sensing. IEEE Electron Dev Lett. 2016;37(7):916.

    CAS  Google Scholar 

  9. Zhang D, Sun YE, Li P, Zhang Y. Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl Mater Interfaces. 2016;8(22):14142.

    CAS  Google Scholar 

  10. Duan Z, Jiang Y, Yan M, Wang S, Yuan Z, Zhao Q, Sun P, Xie G, Du X, Tai H. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl Mater Interfaces. 2019;11(24):21840.

    CAS  Google Scholar 

  11. Duan Z, Zhao Q, Wang S, Yuan Z, Zhang Y, Li X, Wu Y, Jiang Y, Tai H. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens Actuators B Chem. 2020;305:127534.

    CAS  Google Scholar 

  12. Tai H, Duan Z, Wang Y, Wang S, Jiang Y. Paper-based sensors for gas, humidity and strain detections: a review. ACS Appl Mater Interfaces. 2020;12(28):31037.

    CAS  Google Scholar 

  13. Yuan Z, Bariya M, Fahad HM, Wu J, Han R, Gupta N, Javey A. Trace-level, multi-gas detection for food quality assessment based on decorated silicon transistor arrays. Adv Mater. 2020;32(21):1908385.

    CAS  Google Scholar 

  14. Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik. 1959;155(2):206.

    CAS  Google Scholar 

  15. Yao Y, Huang XH, Zhang BY, Zhang Z, Hou D, Zhou ZK. Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure. Sens Actuators B Chem. 2020;302:127192.

    CAS  Google Scholar 

  16. Wang G, Wang B, Park J, Yang J, Shen X, Yao J. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon. 2009;47(1):68.

    CAS  Google Scholar 

  17. Chakraborti S, Joshi P, Chakravarty D, Shanker V, Ansari ZA, Singh SP, Chakrabarti P. Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin. Langmuir. 2012;28(30):11142.

    CAS  Google Scholar 

  18. He J, Chen Y, Manthiram A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater. 2019;9(20):1900584.

    Google Scholar 

  19. He J, Chen Y, Lv W, Wen K, Wang Z, Zhang W, Li Y, Qin W, He W. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries. ACS Nano. 2016;10(9):8837.

    CAS  Google Scholar 

  20. He J, Chen Y, Lv W, Wen K, Xu C, Zhang W, Qin W, He W. Three-dimensional CNT/graphene–Li2S aerogel as freestanding cathode for high-performance Li–S batteries. ACS Energy Lett. 2016;1(4):820.

    CAS  Google Scholar 

  21. He J, Chen Y, Lv W, Wen K, Li P, Wang Z, Zhang W, Qin W, He W. Three-dimensional hierarchical graphene-CNT@Se: a highly efficient freestanding cathode for Li–Se batteries. ACS Energy Lett. 2016;1(1):16.

    CAS  Google Scholar 

  22. He J, Hartmann G, Lee M, Hwang GS, Chen Y, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci. 2019;12(1):344.

    CAS  Google Scholar 

  23. Gao N, Fang X. Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem Rev. 2015;115(16):8294.

    CAS  Google Scholar 

  24. Yuan Z, Tai H, Ye Z, Liu C, Xie G, Du X, Jiang Y. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sens Actuators B Chem. 2016;234:145.

    CAS  Google Scholar 

  25. Yao Y, Ma WY. Self-assembly of polyelectrolytic/graphene oxide multilayer thin films on quartz crystal microbalance for humidity detection. IEEE Sens J. 2014;14(11):4078.

    CAS  Google Scholar 

  26. Li X, Wang J, Xie D, Xu J, Dai R, Xiang L, Zhu H, Jiang Y. Reduced graphene oxide/hierarchical flower-like zinc oxide hybrid films for room temperature formaldehyde detection. Sens Actuators B Chem. 2015;221:1290.

    CAS  Google Scholar 

  27. Richardson JJ, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science. 2015;348(6233):aaa2491.

    Google Scholar 

  28. Hanora A, Plieva FM, Hedström M, Galaev IY, Mattiasson B. Capture of bacterial endotoxins using a supermacroporous monolithic matrix with immobilized polyethyleneimine, lysozyme or polymyxin B. J Biotechnol. 2005;118(4):421.

    CAS  Google Scholar 

  29. Brien FEMO. The control of humidity by saturated salt solutions. J Sci Instrum. 1948;25(3):73.

    Google Scholar 

  30. Zhang D, Wang D, Li P, Zhou X, Zong X, Dong G. Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens Actuators B Chem. 1869;2018:255.

    Google Scholar 

  31. Sethuraman K, Babu RR, Vijayan N, Gopalakrishnan R, Ramasamy P. Growth and characterization of semicarbazone of cyclohexanone. Cryst Res Technol. 2006;41(8):807.

    CAS  Google Scholar 

  32. He Y, Liu Y, Ma J, Han D, Mao J, Han C, Zhang Y. Facile fabrication of high-performance humidity sensors by flash reduction of GO. IEEE Sens J. 2017;17(16):5285.

    CAS  Google Scholar 

  33. Kang SM, Park S, Kim D, Park SY, Ruoff RS, Lee H. Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv Funct Mater. 2011;21(1):108.

    CAS  Google Scholar 

  34. Tai H, Yuan Z, Liu C, Ye Z, Xie G, Du X, Jiang Y. Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sens Actuators B Chem. 2016;230:501.

    CAS  Google Scholar 

  35. Wu Z, Zhu S, Dong X, Yao Y, Guo Y, Gu S, Zhou Z. A facile method to graphene oxide/polyaniline nanocomposite with sandwich-like structure for enhanced electrical properties of humidity detection. Anal Chim Acta. 2019;1080:178.

    CAS  Google Scholar 

  36. Ren X, Zhang D, Wang D, Li Z, Liu S. Quartz crystal microbalance sensor for humidity sensing based on layer-by-layer self-assembled PDDAC/graphene oxide film. IEEE Sens J. 2018;18(23):9471.

    CAS  Google Scholar 

  37. Yao Y, Chen X, Guo H, Wu Z. Graphene oxide thin film coated quartz crystal microbalance for humidity detection. Appl Surf Sci. 2011;257(17):7778.

    CAS  Google Scholar 

  38. Lee SW, Choi BI, Kim JC, Woo SB, Kim YG, Yoo J, Seo YS. Reduction and compensation of humidity measurement errors at cold temperatures using dual QCM humidity sensors based on graphene oxides. Sens Actuators B Chem. 2019;284:386.

    CAS  Google Scholar 

  39. Yamamoto N, Yamaguchi T, Hara K. Development of QCM humidity sensors using anodized alumina film. Electron Commun Jpn. 2019;102(11):39.

    Google Scholar 

  40. Zhang D, Wang D, Wang D, Wu Z. Polypyrrole-modified tin disulfide nanoflower-based quartz crystal microbalance sensor for humidity sensing. IEEE Sens J. 2019;19(20):9166.

    CAS  Google Scholar 

  41. Gao N, Li H-Y, Zhang W, Zhang Y, Zeng Y, Zhixiang H, Liu J, Jiang J, Miao L, Yi F, Liu H. QCM-based humidity sensor and sensing properties employing colloidal SnO2 nanowires. Sens Actuators B Chem. 2019;293:129.

    CAS  Google Scholar 

  42. Wang L, Xu J, Wang X, Cheng Z, Xu J. Facile preparation of N-rich functional polymer with porous framework as QCM sensing material for rapid humidity detection. Sens Actuators B Chem. 2019;288:289.

    CAS  Google Scholar 

  43. Hu W, Chen S, Zhou B, Liu L, Ding B, Wang H. Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sens Actuators B Chem. 2011;159(1):301.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U19A2070), the National Science Funds for Excellent Young Scholars of China (No. 61822106) and the National Science Funds for Creative Research Groups of China (No. 61421002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Tai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Tai, HL., Su, YJ. et al. Self-assembled graphene oxide/polyethyleneimine films as high-performance quartz crystal microbalance humidity sensors. Rare Met. 40, 1597–1603 (2021). https://doi.org/10.1007/s12598-020-01598-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01598-9

Keywords

Navigation