Skip to main content
Log in

Coercivity enhancement of hot-deformed NdFeB permanent magnets with AlCuZn eutectic alloy grain boundary diffusion

  • Original Paper
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

It is approved that grain boundary diffusion is an effective method to increase the coercivity of hot-deformed NdFeB magnet. In this paper, a new rare earth-free grain boundary diffusion source of hot-deformed magnet was studied. AlCuZn powders blended with commercial NdFeB powders were hot-compacted to obtain fully dense magnets, hot-deformed into anisotropic magnets and finally annealed to gain better homogeneity. Initially, the influences of annealing temperature and time on the magnetic properties of the specimens were studied and the optimal parameters of 600 °C and 60 min were achieved. Then, by changing the proportions of AlCuZn grain boundary diffusion, the coercivity, remanence and maximum energy product of the hot-deformed NdFeB magnets were examined. The result showed that with 1.0 wt% AlCuZn grain boundary diffusion and annealing at 600 °C for 60 min, the coercivity rose from 828 to 987 kA·m−1 without deteriorating the remanence. Microstructural analysis confirmed that AlCuZn diffused into the intergranular boundaries and the magnet diffused with AlCuZn possessed finer grains than that of without AlCuZn grain boundary diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu WQ, Chang C, Yue M, Yang JS, Zhang DT, Zhang JX, Liu YQ. Coercivity, microstructure, and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles. Rare Met. 2017;36(9):30.

    CAS  Google Scholar 

  2. Wang JM, Guo ZH, Jing Z, Du X, Yu NJ, Li MY, Zhu MG, Li W. Coercivity enhancement of hot-deformed Nd-Fe-B magnets with Pr-Cu alloy addition. Rare Met. 2018. https://doi.org/10.1007/s12598-017-0993-7.

    Article  Google Scholar 

  3. Sugimoto S. Current status and recent topics of rare-earth permanent magnets. J Phys D:Appl Phys. 2011;44(6):064001.

    Article  Google Scholar 

  4. Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 2011;23(7):821.

    Article  CAS  Google Scholar 

  5. Liu L, Sepehriamin H, Sasaki TT, Ohkubo T, Yano M, Sakuma N, Kato A, Shoji T, Hono K. Coercivity enhancement of Nd-Fe-B hot-deformed magnets by the eutectic grain boundary diffusion process using Nd-Ga-Cu and Nd-Fe-Ga-Cu alloys. AIP Adv. 2018;8(5):056205.

    Article  Google Scholar 

  6. Yin WZ, Chen RJ, Tang X, Lin NM, Lee D, Yan AR. Origins of axial inhomogeneity of magnetic performance in hot deformed Nd-Fe-B ring magnets. J Appl Phys. 2012;111(7):411.

    Article  Google Scholar 

  7. Li AH, Li W, Lai B, Wang HJ. Investigation on microstructure, texture, and magnetic properties of hot deformed Nd-Fe-B ring magnets. J Appl Phys. 2010;107(9):358.

    Google Scholar 

  8. Hono K, Sepehri-amin H. Strategy for high-coercivity Nd-Fe-B magnets. Scr Mater. 2012;67(6):530.

    Article  CAS  Google Scholar 

  9. Xie JJ, Yuan C, Luo Y, Yang Y, Hu B, Yu DB, Yan W. Coercivity enhancement and thermal-stability improvement in the melt-spun NdFeB ribbons by grain boundary diffusion. J Magn Magn Mater. 2018;446:210.

    Article  CAS  Google Scholar 

  10. Wang YL, Luo Y, Wang Z, Wu GY, Xie JJ, Yan W, Yu DB. Coercivity enhancement in Nd-Fe-B magnetic powders by Nd-Cu-Al grain boundary diffusion. J Magn Magn Mater. 2018;458:85.

    Article  CAS  Google Scholar 

  11. Tang X, Chen RJ, Li M, Jin C, Yin W, Lee D, Yan AR. Grain boundary diffusion behaviors in hot-deformed Nd2Fe14B magnets by PrNd-Cu low eutectic alloys. J Magn Magn Mater. 2018;445:66.

    Article  CAS  Google Scholar 

  12. Zhou L, Li J, Cheng X, Liu T, Yu X, Li B. Dy gradient and coercivity in grain boundary diffusion processed Nd–Fe–B magnet. J Rare Earths. 2017;35(6):559.

    Article  CAS  Google Scholar 

  13. Tang M, Bao XQ, Lu K, Sun L, Mu X, Li J, Gao XX. Microstructure modification and coercivity enhancement of Nd–Ce–Fe–B sintered magnets by grain boundary diffusing Nd–Dy–Al alloy. J Magn Magn Mater. 2017;442:338.

    Article  CAS  Google Scholar 

  14. Lu K, Bao XQ, Tang M, Sun L, Li J, Gao XX. Influence of annealing on microstructural and magnetic properties of Nd–Fe–B magnets by grain boundary diffusion with Pr-Cu and Dy-Cu alloys. J Magn Magn Mater. 2017;441:517.

    Article  CAS  Google Scholar 

  15. Zhang T, Chen F, Zheng Y, Wen H, Zhang L, Zhou L. Anisotropic behavior of grain boundary diffusion in hot-deformed Nd–Fe–B magnet. Scr Mater. 2017;129:1.

    Article  CAS  Google Scholar 

  16. Wang ZX, Ju J, Wang J, Yin W, Chen RJ, Li M, Sun J, Jin C, Tang X, Lee D, Yan AR. Near-surface microstructure improvement for die-upset Nd–Fe–B magnets with an enhanced maximum energy product. J Alloys Compd. 2017;710:66.

    Article  CAS  Google Scholar 

  17. Wang CG, Yue M, Zhang DT, Liu WQ, Zhang JX. Structure and magnetic properties of hot deformed Nd2Fe14B magnets doped with DyHx nanoparticles. J Magn Magn Mater. 2016;404:64.

    Article  CAS  Google Scholar 

  18. Lee YI, Huang GY, Shih CW, Chang WC, Chang HW, You JS. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy). J Magn Magn Mater. 2017;439:1.

    Article  CAS  Google Scholar 

  19. Sawatzki S, Kübel C, Ener S, Gutfleisch O. Grain boundary diffusion in nanocrystalline Nd-Fe-B permanent magnets with low-melting eutectics. Acta Mater. 2016;115:354.

    Article  Google Scholar 

  20. Tang W, Zhou L, Sun KW, Dennis KW, Kramer MJ, Anderson IE, Mccallum RW. Anisotropic hot deformed magnets prepared from Zn-coated MRE-Fe-B ribbon powder (MRE = Nd + Y + Dy). J Appl Phys. 2014;115(17):17A725.

    Article  Google Scholar 

  21. Saito T, Sajima Y, Nishio-hamane D. Enhancement of magnetic properties by Zn addition in Nd-Fe-B hot-deformed magnets produced by spark plasma sintering method. J Alloys Compd. 2016;687:662.

    Article  CAS  Google Scholar 

  22. Yi PP, Lin M, Chen R, Lee D, Yan AR. Enhanced magnetic properties and bending strength of hot deformed Nd-Fe-B magnets with Cu additions. J Alloys Compd. 2010;491(1–2):605.

    Article  CAS  Google Scholar 

  23. Mishra RK. Microstructure of hot-pressed and die-upset NdFeB magnets. J Appl Phys. 1987;62(3):967.

    Article  CAS  Google Scholar 

  24. Mishra RK, Brewer EG, Lee RW. Grain growth and alignment in hot deformed Nd–Fe–B magnets. J Appl Phys. 1988;63(8):3528.

    Article  CAS  Google Scholar 

  25. Wang XC, Zhu MG, Li W, Li YF, Lai B, Du A. Microstructure and magnetic properties of anisotropic hot-deformed magnet of different magnetic particle sizes. Rare Met. 2015;34(4):255.

    Article  Google Scholar 

  26. Sawatzki S, Dirba I, Wendrock H, Schultz L, Gutfleisch O. Diffusion processes in hot-deformed Nd–Fe–B magnets with DyF3 additions. J Magn Magn Mater. 2014;358:163.

    Article  Google Scholar 

  27. Zhao R, Zhang WC, Li JJ, Wang HJ, Zhu MG, Li W. Effect of die-upset process on magnetic properties and deformation behavior of nanostructured Nd-Fe-B magnets. J Magn. 2011;16(3):294.

    Article  Google Scholar 

  28. Chen B, Li J, Liu Y, Wang RQ, Lian LX. Structural and magnetic properties of single-stage hot deformed NdFeB magnets prepared by different initial densities. Rare Met. 2014;33(4):448.

    Article  CAS  Google Scholar 

  29. Yi PP, Lee D, Yan AR. Effects of compositions on characteristics and microstructures for melt-spun ribbons and die-upset magnets of Nd12.8+xFe81.2−xyzCoyGazB6. J Magn Magn Mater. 2010;322(20):3019.

    Article  CAS  Google Scholar 

  30. Zhang DT, Wang PF, Yue M, Liu WQ, Zhang JX, Sundararajan JA, Qiang Y. High-temperature magnetic properties of anisotropic MnBi/NdFeB hybrid bonded magnets. Rare Met. 2016;35(6):471.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key Research and Development Program (No. 2016YFB0700902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-She Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, YQ., Li, KS., Peng, HJ. et al. Coercivity enhancement of hot-deformed NdFeB permanent magnets with AlCuZn eutectic alloy grain boundary diffusion. Rare Met. 41, 226–231 (2022). https://doi.org/10.1007/s12598-020-01531-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01531-0

Keywords

Navigation