Skip to main content
Log in

Microstructure, wear and corrosion performance of plasma electrolytic oxidation coatings formed on D16T Al alloy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The plasma electrolytic oxidation (PEO) coatings were produced on D16T Al alloy in the aluminate and silicate electrolyte with and without graphene. The phase composition, microstructure and elemental distribution of the coatings were tested by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). The wear and corrosion resistance of PEO coatings were evaluated by dry sliding wear tests and electrochemical impedance spectroscopy (EIS). The morphology feature of the wear tracks was compared and analyzed by SEM and three-dimensional microscope. The results demonstrate that the structure, wear and corrosion resistance of PEO coatings with graphene are better than that of PEO coatings without graphene. The coating fabricated in the aluminate electrolyte with graphene exhibited the lowest roughness. The coated samples formed in silicate electrolyte with graphene displayed the thickest, densest and the most compact coating. It exhibited the best wear and corrosion resistance due to the incorporation mode of graphene in the coatings. The mechanism of graphene improving the wear and corrosion resistance of PEO coating was further discussed. In summary, the comprehensive performances of PEO coatings formed in silicate electrolyte on D16T Al alloy are superior to that produced in aluminate electrolyte.

Graphic abstract

Graphene incorporated in PEO coating in forms of embedded mode and spread mode filled the pores and cracks, and significantly improved the wear and corrosion resistance. That’s ascribed to the excellent structure of PEO coating produced in silicate electrolyte with graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang JH, Du MH, Han FZ, Yang J. Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al-alloys. Appl Surf Sci. 2014;292:658.

    CAS  Google Scholar 

  2. Xiang N, Song RG, Zhang JJ, Song RX, Lu XY, Su XP. Effects of current density on microstructure and properties of plasma electrolyte oxidation ceramic coatings formed on 6063 aluminum alloy. Trans Nonferrous Met Soc China. 2016;26(3):806.

    CAS  Google Scholar 

  3. Xue WB, Wu XL, Li XJ, Tian H. Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte. J Alloys Compd. 2006;425(1–2):302.

    CAS  Google Scholar 

  4. Wang Z, Wu L, Cai W, Shan A, Jiang Z. Effects of fluoride on the structure and properties of microarc oxidation coating on aluminum alloy. J Alloys Compd. 2010;505:188.

    CAS  Google Scholar 

  5. Krishna LR, Somaraju KRC, Sundararajan G. The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation. Surf Coat Technol. 2003;163–164:484.

    Google Scholar 

  6. Venugopal A, Srinath J, Rama Krishna L, Ramesh Narayanan P, Sharma SC. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2016;660:39.

    CAS  Google Scholar 

  7. Yerokhin AL, Lyubimov VV, Ashitkov RV. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceram Int. 1998;24(1):1.

    CAS  Google Scholar 

  8. Yerokin AL, Leyland A, Matthews A. Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation. Appl Surf Sci. 2002;200:172.

    Google Scholar 

  9. Fan XL, Huo YF, Li CY, Kannan MB, Chen XB, Guan SK, Zeng RC, Ma QL. Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA. Rare Met. 2019;38(6):520.

    CAS  Google Scholar 

  10. Wu ZQ, Xia Y, Li G, Xu FT. Structure and mechanical properties of ceramic coatings fabricated by plasma electrolytic oxidation on aluminized steel. Appl Surf Sci. 2007;253(20):8398.

    CAS  Google Scholar 

  11. Wen L, Wang YM, Zhou Y, Guo LX, Ouyang JH. Microstructure and corrosion resistance of modified 2024 Al alloy using surface mechanical attrition treatment combined with microarc oxidation process. Corros Sci. 2011;53(1):473.

    CAS  Google Scholar 

  12. Lv GH, Gu WC, Chen HA, Feng WR, Khosa ML, Li L, Niu EW, Zhang GL, Yang SZ. Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte. Appl Surf Sci. 2006;253(5):2947.

    CAS  Google Scholar 

  13. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999;122(2):73.

    CAS  Google Scholar 

  14. Yao ZP, Jiang ZH, Zhang XL. Effect of Na2SO4 on structure and corrosion resistance of ceramics coatings containing zirconium oxide on Ti–6Al–4V alloy. J Am Ceram Soc. 2006;89(9):2929.

    CAS  Google Scholar 

  15. Dehnavi V, Liu XY, Luan BL, Shoesmith DW, Rohani S. Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy. Surf Coat Technol. 2014;251(25):106.

    CAS  Google Scholar 

  16. Liu R, Wu J, Xue WB, Qu Y, Yang CL, Wang B, Wu XY. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy. Mater Chem Phys. 2014;148(1–2):284.

    CAS  Google Scholar 

  17. Wheeler JM, Curran JA, Shrestha S. Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation (PEO) coatings on aluminum alloy 5052. Surf Coat Technol. 2012;207:480.

    CAS  Google Scholar 

  18. Belmonte M, Ramirez C, Gonzalez-Julian J, Schneider J, Miranzo P, Osendi MI. The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon. 2013;61:431.

    CAS  Google Scholar 

  19. Yu P, Zuo Y, Zhu X, Tian H, Zhang Y, Chen F. Superhydrophobic and corrosion resistance of hydrotalcite/micro-arc oxidation composite films on aluminum alloy. Chin J Rare Met. 2019;43(1):67.

    Google Scholar 

  20. Yeh SC, Tsai DS, Wang JM, Chou CC. Coloration of the aluminum alloy surface with dye emulsions while growing a plasma electrolytic oxide layer. Surf Coat Technol. 2016;287:61.

    CAS  Google Scholar 

  21. Qin J, Guo H, Zhang X. Microstructure and properties of high thermal conductivity graphite flake/2024 aluminum. Chin J Rare Met. 2019;43(6):604.

    Google Scholar 

  22. Ovundur M, Muhaffel F, Cimenoglu H. Characterization and tribological properties of hard anodized and micro arc oxidized 5754 quality aluminum alloy. Tribol Ind. 2015;37:55.

    Google Scholar 

  23. Xie HJ, Cheng YL, Li SX, Cao JH, Cao L. Wear and corrosion resistant coatings on surface of cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes. Trans Nonferrous Met Soc China. 2017;27(2):336.

    CAS  Google Scholar 

  24. Hadi NV, Reza EK, Masoud KA. Tribological performance of PEO-WC nanocomposite coating on Mg alloys deposited by plasma electrolytic oxidation. Tribol Int. 2016;98:253.

    Google Scholar 

  25. Stojadinović S, Tadić N, Radić N, Stojadinović B, Grbić B, Vasilić R. Synthesis and characterization of Al2O3/ZnO coatings formed by plasma electrolytic oxidation. Surf Coat Technol. 2015;276:573.

    Google Scholar 

  26. Guan YJ, Xia Y. Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation. Trans Nonferrous Met Soc China. 2006;16:1097.

    CAS  Google Scholar 

  27. Li QB, Liang J, Liu BX, Peng ZJ, Wang Q. Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminum alloy. Appl Surf Sci. 2014;297:176.

    CAS  Google Scholar 

  28. Yerokhin AL, Snizhko LO, Gurevina NL, Leyland A, Pilkington A, Matthews A. Discharge characterization in plasma electrolytic oxidation of aluminium. J Phys D Appl Phys. 2003;36:2110.

    CAS  Google Scholar 

  29. Dehnavi V, Luan BL, Shoesmith DW, Liu XY, Rohani S. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surf Coat Technol. 2013;226:100.

    CAS  Google Scholar 

  30. Lin TY, Zhang XY, Huang X, Gong XP, Zhang JJ, Hu XJ. Microstructure and properties of microarc oxidation coating formed on aluminum alloy with compound additives nano-TiO2 and nano-ZnO. Rare Met. 2018;36(11):976.

    Google Scholar 

  31. Lv G, Gu W, Chen H, Feng W, LatifKhosa M, Li L, Niu E, Zhang G, Yang S. Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte. Appl Surf Sci. 2006;253:2947.

    CAS  Google Scholar 

  32. Khan RHU, Yerokhin AL, Pilkington T, Leyland A, Matthews A. Residual stresses in plasma electrolytic oxidation coatings on Al alloy produced by pulsed unipolar current. Surf Coat Technol. 2005;200(5–6):1580.

    CAS  Google Scholar 

  33. Yerokhin AL, Shatrov A, Samsonov V, Shashkov P, Pilkington A, Leyland A, Matthews A. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surf Coat Technol. 2005;199(2–3):150.

    CAS  Google Scholar 

  34. Cheng Y, Wu F, Dong J, Wu X, Xue Z, Matykina E, Skeldon P, Thompson GE. Comparison of plasma electrolytic oxidation of zirconium alloy in silicate- and aluminate-based electrolytes and wear properties of the resulting coatings. Electrochim Acta. 2012;85:25.

    CAS  Google Scholar 

  35. Lv GH, Chen H, Gu WC, Feng WR, Li L, Niu EW, Zhang XH, Yang SZ. Effects of graphite additives in the electrolytes on the microstructure and corrosion resistance of alumina PEO coatings. Curr Appl Phys. 2009;9(2):324.

    Google Scholar 

  36. Pezzato L, Angelini V, Brunelli K, Martini C, Dabala M. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys. Trans Nonferrous Met Soc China. 2018;28(2):259.

    CAS  Google Scholar 

  37. Mu M, Liang J, Zhou X, Xiao Q. One-step preparation of TiO2/MoS2 composite coating on Ti6Al4V alloy by plasma electrolytic oxidation and its tribological properties. Surf Coat Technol. 2013;214:124.

    CAS  Google Scholar 

  38. Chang L, Zhang H. A mathematical model for frictional elastic-plastic sphere-on-flat contacts at sliding incipient. J Appl Mech. 2007;74(1):100.

    Google Scholar 

  39. Li JL, Cai GY, Zhong HS, Wang YX, Chen JM. Tribological properties in seawater for Ti/TiCN coatings on Ti6Al4V alloy by arc ion plating with different carbon contents. Rare Met. 2017;36(11):858.

    CAS  Google Scholar 

  40. Liu W, Blawert C, Zheludkevich ML, Lin Y, Talha M, Shi Y, Chen L. Effects of graphenenanosheets on the ceramic coatings formed on Ti6Al4V alloy drill pipe by plasma electrolytic oxidation. J Alloys Compd. 2019;789:996.

    CAS  Google Scholar 

  41. Alajmi M, Shalwan A. Correlation between mechanical properties with specific wear rate and the coefficient of friction of graphite/epoxy composites. Materials. 2015;8(7):4162.

    CAS  Google Scholar 

  42. Qian M, Soutar AM, Tan XH, Zeng XT, Wijesinghe SL. Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel. Thin Solid Films. 2009;517(17):5237.

    CAS  Google Scholar 

  43. Liu Y, Zhang JJ, Liu S, Wang Y, Han ZW, Ren LQ. Fabrication of a superhydrophobic graphene surface with excellent mechanical abrasion and corrosion resistance on an aluminum alloy substrate. RSC Adv. 2014;4(85):45389.

    CAS  Google Scholar 

  44. Venugopal A, Srinath J, Rama Krishna L, Ramesh Narayanan P, Sharma SC, Venkitakrishnan PV. Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy. Mater Sci Eng A. 2016;660:39.

    CAS  Google Scholar 

  45. Jamesh MI, Li P, Bilek Marcela MM, Boxman RL, McKenzie David R, Chu Raul K. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition. Corros Sci. 2015;97:126.

    CAS  Google Scholar 

  46. Gnedenkov AS, Sinebryukhov SL, Mashtalyar DV, Gnedenkov SV. Protective properties of inhibitor-containing composite coatings on a Mg alloy. Corros Sci. 2016;102:348.

    CAS  Google Scholar 

  47. Kaseem M, Kamil MP, Kwon JH, Ko YG. Effect of sodium benzoate on corrosion behavior of 6061 Al alloy processed by plasma electrolytic oxidation. Surf Coat Technol. 2015;283:268.

    CAS  Google Scholar 

  48. Zhao J, Xie X, Zhang C. Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy. Corros Sci. 2017;114:146.

    CAS  Google Scholar 

  49. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos B. 2015;77:402.

    Google Scholar 

  50. Berman D, Erdemir A, Sumant AV. Graphene: a new emerging lubricant. Mater Today. 2014;17(1):31.

    CAS  Google Scholar 

  51. Lin J, Wang L, Chen G. Modification of graphene platelets and their tribological properties as lubricating additive. Tribol Lett. 2011;41(1):209.

    CAS  Google Scholar 

  52. Hua H, Zhao S, Sun G, Zhong Y, You B. Evaluation of scratch resistance of functionalized graphene oxide/polysiloxane nanocomposite coatings. Prog Org Coat. 2018;117:118.

    Google Scholar 

  53. Ling WD, Wei P, Duan JZ, Chen JM, Duan WS. First-principles study of the friction and wear resistance of graphene sheets. Tribol Lett. 2017;65:53.

    Google Scholar 

  54. Liu W, Liu Y, Lin Y, Zhang Z, Feng S, Talha M, Shi Y, Shi T. Effects of graphene on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on D16T Al alloy. Appl Surf Sci. 2019;475:645.

    CAS  Google Scholar 

  55. Zhou B, Fan S, Fan Y, Zheng Q, Zhang X, Jiang W, Wang L. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 2020;39(5):513.

    CAS  Google Scholar 

  56. Yin H, Dai Q, Hao X, Huang W, Wang X. Preparation and tribological properties of graphene oxide doped alumina composite coatings. Surf Coat Technol. 2018;352:411.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Award of Fellowship from China Scholarship Council (No. 201608515038), the National Natural Science Foundation of China (No. 51274170), the 18th College Students’ Key Open Experimental Subjects of Southwest Petroleum University (No. KSZ18503), and the Plan Program about Passing a Test for the Youth Technicist worked in the Laboratory of Southwest Petroleum University (No. 201131010056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WY., Liu, Y., Blawert, C. et al. Microstructure, wear and corrosion performance of plasma electrolytic oxidation coatings formed on D16T Al alloy. Rare Met. 39, 1425–1439 (2020). https://doi.org/10.1007/s12598-020-01523-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01523-0

Keywords

Navigation