Skip to main content
Log in

Dynamic softening and microstructural evolution during hot deformation of Al–Cu–Mg–Zr alloys with different homogenization cooling rates

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

An Al–Cu–Mg–Zr alloy, which obtained different homogenization cooling rates by changing the heat-treated sample size, was compressed to various strains at the deformation temperature of 300 ºC and strain rate of 0.01 s−1. The results showed that the homogenization cooling rate had strong effects on the hot deformation behavior of the alloy. The flow stress and relative dynamic softening rate of the alloy were significantly higher under a high cooling rate (HCR) than those under a low cooling rate (LCR). Furthermore, based on X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermodynamic equilibrium phase calculation, the substructure evolution in the grain interior, morphology, and spatial distribution of the precipitates were studied to determine the differences in the flow softening mechanism. The main softening mechanism could be summarized as dynamic recovery and precipitation coarsening for the LCR alloy and dynamic precipitation for the HCR alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lam DF, Menzemer CC, Srivatsan TS. A study to evaluate and understand the response of aluminum alloy 2026 subjected to tensile deformation. Mater Des. 2010;31(1):166.

    Article  CAS  Google Scholar 

  2. Li Y, Liu ZY, Lin LH, Peng JT, Ning AL. Deformation behavior of an Al–Cu–Mg–Mn–Zr alloy during hot compression. J Mater Sci. 2011;46(11):3708.

    Article  CAS  Google Scholar 

  3. Liu XY, Pan QL, He YB, Li WB, Liang WJ, Yin ZM. Flow behavior and microstructural evolution of Al–Cu–Mg–Ag alloy during hot compression deformation. Mater Sci Eng A. 2009;500(1–2):150.

    Article  Google Scholar 

  4. Banerjee S, Robi PS, Srinivasn A, Kumar LP. High temperature deformation behavior of Al–Cu–Mg alloys micro-alloyed with Sn. Mater Sci Eng A. 2010;527(10):2498.

    Article  Google Scholar 

  5. Li HZ, Wang HJ, Liang XP, Liu Y, Zhang XM. Hot deformation and processing map of 2519A aluminum alloy. Mater Sci Eng A. 2011;528(3):1548.

    Article  Google Scholar 

  6. Huang XD, Zhang H, Han Y, Wu WX, Chen JH. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater Sci Eng A. 2010;527(3):485.

    Article  Google Scholar 

  7. Cepda-jimenez CM, Ruano OA, Carsi M, Carrene F. Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization. Mater Sci Eng A. 2012;552(9):530.

    Article  Google Scholar 

  8. Ou L, Zheng ZQ, Nie YF, Jian HG. Hot deformation behavior of 2060 alloy. J. Alloys Compd. 2015;648:681.

    Article  CAS  Google Scholar 

  9. Chen L, Zhao GQ, Gong J, Chen XX, Chen MM. Hot deformation behaviors and processing maps of 2024 aluminum alloy in as-cast and homogenized states. J Mater Eng Perform. 2015;24(12):5002.

    Article  CAS  Google Scholar 

  10. Li PW, Li HZ, Huang L, Liang XP, Zhu ZX. Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map. Trans Nonferrous Met Soc China. 2017;27(8):1677.

    Article  CAS  Google Scholar 

  11. Zang WL, Xaio DH, Li T, Du JD, Ding DY. Microstructure and mechanical properties of two-stage aged Al-Cu-Mg-Ag-Sm alloy. Rare Met. 2018;38(1):42.

    Article  Google Scholar 

  12. Wouters P, Verlinden B, Mcqueen HJ, Aernoudt E, Delaeyl L. Effect of homogenization and precipitation treatments on the hot workability of an aluminium alloy AA2024. Mater Sci Eng, A. 1990;123(2):239.

    Article  Google Scholar 

  13. Verlinden B, Wouters P, Mcqueen HJ, Aernoudt E, Delaey L. Effect of different homogenization treatments on the hot workability of aluminium alloy AA2024. Mater Sci Eng A. 1990;123(2):229.

    Article  Google Scholar 

  14. Mcqueen HJ. Development of dynamic recrystallization theory. Mater Sci Eng, A. 2004;387(1):203.

    Article  Google Scholar 

  15. Zhang H, Chen R, Huang XD, Chen JH. Microstructural evolution of 2026 aluminum alloy during hot compression and subsequent heat treatment. Trans Nonferrous Met Soc China. 2011;21(5):955.

    Article  CAS  Google Scholar 

  16. Gavgali M, Aksakal B. Effects of various homogenisation treatments on the hot workability of ingot aluminium alloy AA2014. Mater Sci Eng A. 1998;254(1–2):189.

    Article  Google Scholar 

  17. Ebranhimi GR, Zarei-hanzaki A, Haghshenas M, Arashahi H. The effect of heat treatment on hot deformation behaviour of Al 2024. J Mater Process Technol. 2008;206(1–3):25.

    Article  Google Scholar 

  18. Cavaliere P. Hot and warm forming of 2618 aluminium alloy. J Light Met. 2002;2(4):247.

    Article  Google Scholar 

  19. Yang SL, Shen J, Zhang YA, Li ZH, Li XW, Huang SH, Xiong BQ. Processing maps and microstructural evolution of Al–Cu–Li alloy during hot deformation. Rare Met. 2018;38(12):1136.

    Article  Google Scholar 

  20. Yan LM, Shen J, Li JP, Mao BP. Static softening behaviors of 7055 alloy during the interval time of multi-pass hot compression. Rare Met. 2013;32(3):241.

    Article  CAS  Google Scholar 

  21. Totik Y, Gavgali M. The effect of homogenization treatment on the hot workability between the surface and the center of AA 2014 ingots. Mater Charact. 2002;49(3):261.

    Article  CAS  Google Scholar 

  22. Liu SD, You JH, Zhang XM, Deng YL, Yuan YB. Influence of cooling rate after homogenization on the flow behavior of aluminum alloy 7050 under hot compression. Mater Sci Eng A. 2010;527(4–5):1200.

    Article  Google Scholar 

  23. Liu C, Zhang H, Jiang FL. Characterization of dynamic microstructure evolution during hot deformation of Al–4.10Cu–1.42Mg–0.57Mn–0.12Zr alloy. Trans Nonferrous Met Soc China. 2014;24(11):3477.

    Article  CAS  Google Scholar 

  24. Jiang FL, Zhang H, Li LX, Chen JH. The kinetics of dynamic and static softening during multistage hot deformation of 7150 aluminum alloy. Mater Sci Eng A. 2012;552:269.

    Article  CAS  Google Scholar 

  25. Zhang J, Chen BQ, Zhang BX. Effect of initial microstructure on the hot compression deformation behavior of a 2219 aluminum alloy. Mater Des. 2012;34:15.

    Article  Google Scholar 

  26. Verlinden B, Suhadi A, Delaey L. A generalized constitutive equation for an AA6060 aluminium alloy. Scripta Metal Et Mater. 1993;28(11):1441.

    Article  CAS  Google Scholar 

  27. Jiang FL, Zhang H, Weng SC, Fu DF. Characterization of dynamic microstructural evolution of AA7150 aluminum alloy at high strain rate during hot deformation. Trans Nonferrous Met Soc China. 2016;26(1):51.

    Article  CAS  Google Scholar 

  28. Zurob HS, Hutchinson CR, Brechen Y, Purdy G. Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization. Acta Mater. 2002;50(12):3077.

    Article  Google Scholar 

  29. Humphereys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press; 1996. 557.

    Google Scholar 

  30. Tabatabaei N, Taheri AK, Vaseghi M. Dynamic strain aging of a commercial Al–Mg–Si–Cu alloy during equal channel angular extrusion process. J Alloys Compd. 2010;502(1):59.

    Article  CAS  Google Scholar 

  31. Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG. Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater. 2009;57(10):3123.

    Article  CAS  Google Scholar 

  32. Cerri E, Evangelista E, Forcellese A, Mcqueen HJ. Comparative hot workability of 7012 and 7075 alloys after different pretreatments. Mater Sci Eng, A. 1995;197(2):181.

    Article  Google Scholar 

  33. Ebrahimi GR, Ezatpour HR. Effect of precipitation on the warm deformation behavior of AA2024 alloy. Mater Sci Eng, A. 2017;681(2):10.

    Article  CAS  Google Scholar 

  34. Bardi F, Cabibbo M, Spigarelli S. An analysis of thermo-mechanical treatments of a 2618 aluminium alloy: study of optimum conditions for warm forging. Mater Sci Eng, A. 2002;334(1–2):87.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51674111 and 51605234) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20130161110007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, GW., Wang, G., Jiang, FL. et al. Dynamic softening and microstructural evolution during hot deformation of Al–Cu–Mg–Zr alloys with different homogenization cooling rates. Rare Met. 40, 626–634 (2021). https://doi.org/10.1007/s12598-020-01382-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01382-9

Keywords

Navigation