Skip to main content
Log in

Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The cooling gradient of Mg–3Zn–1Ca–0.5Sr alloy in cast ingots under different cooling methods (air cooling, warm-water cooling and ice–water-mixture cooling) was examined and the effect of cooling rate on the structure and corrosion properties was studied. The microstructure of the alloy was composed of α-Mg, Ca2Mg6Zn3 and Mg17Sr2 phases. As the solidification cooling rate increased, the grain was refined, Zn and Sr were less segregated, the distributions of Zn and Sr were more uniform, and corrosion rate was found to first increase and then decrease; this contradicts the findings of recent research. With cooling rate increasing, the number of corroded microcouples comprising second phase and α-Mg increases. More α-Mg participates in corrosion, leading to a layered and deep corrosion pit and an increased corrosion rate. However, as the microstructure became sufficiently dense, the corroded structure protected the deep α-Mg from participating in corrosion, thus reducing the corrosion rate.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang M, Deng WL, Yang XN, Wang YK, Zhang XY, Hang RQ, Deng KK. In vitro biodegradability of Mg–2Gd–xZn alloys with different Zn contents and solution treatments. Rare Met. 2019;38(7):620.

    Article  CAS  Google Scholar 

  2. Cui T, Guan RG, Qin HM, Song FL. Study of the degradation behaviour of biomaterial Mg-4.0Zn-2.0Sr alloy in SBF. Adv Mater Res. 2015;1095:309.

    Article  Google Scholar 

  3. Cui T, Guan RG, Qin HM. The microstructures and biocompatibility of a novel biomaterial Mg–4.0Zn–1.5Sr alloy sheet after aged treatment. Adv Sci Lett. 2013;19(4):1099.

    Article  CAS  Google Scholar 

  4. Walker J, Shadanbaz S, Woodfield TB, Staiger MP, Dias GJ. Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res B Appl Biomater. 2014;102(6):1316.

    Article  Google Scholar 

  5. Jang Y, Tan Z, Jurey C, Xu Z, Dong Z, Collins B, Yun Y. Understanding corrosion behavior of Mg–Zn–Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation. Mater Sci Eng, C. 2015;48:28.

    Article  CAS  Google Scholar 

  6. Matias TB, Roche V, Nogueira RP, Asato GH, Kimunami CS, Bolfarini C, Botta WJ, Jorge AM. Mg–Zn–Ca amorphous alloys for application as temporary implant: effect of Zn content on the mechanical and corrosion properties. Mater Des. 2016;110:188.

    Article  CAS  Google Scholar 

  7. Cai SH, Lei T, Li NF, Feng FF. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C. 2012;32(8):2570.

    Article  CAS  Google Scholar 

  8. Chartrand P, Pelton AD. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the Al–Mg, Al–Sr, Mg–Sr, and Al–Mg–Sr systems. J Phase Equilibria. 1994;15(6):591.

    Article  CAS  Google Scholar 

  9. Yin P, Li NF, Lei T, Liu L, Ouyang C. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. J Mater Sci Mater Med. 2013;24(6):1365.

    Article  CAS  Google Scholar 

  10. Torkian A, Faraji G, Pedram MS. Mechanical properties and in vivo biodegradability of Mg–Zr–Y–Nd–La magnesium alloy produced by a combined severe plastic deformation. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01353-9.

    Article  Google Scholar 

  11. Persaud-Sharma D, Budiansky N, McGoron AJ. Biocompatibility assessment of novel bioresorbable alloys Mg–Zn–Se and Mg–Zn–Cu for endovascular applications: in vitro studies. J Biomimet Biomater Tissue Eng. 2013;17:25.

    Article  Google Scholar 

  12. Cho SY, Chae SW, Choi KW, Seok HK, Kim YC, Jung JY, Assad M. Biocompatibility and strength retention of biodegradable Mg–Ca–Zn alloy bone implants. J Biomed Mater Res B Appl Biomater. 2013;101(2):201.

    Article  Google Scholar 

  13. Li D, Xue HS, Yang G, Zhang DF. Microstructure and mechanical properties of Mg–6Zn–0.5Y magnesium alloy prepared with ultrasonic treatment. Rare Met. 2017;36(8):622.

    Article  CAS  Google Scholar 

  14. Wang G, Guo CX, Pang SJ. Thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nd addition. Rare Met. 2017;36(3):183.

    Article  CAS  Google Scholar 

  15. Atrens A, Winzer N, Song GL, Dietzel W, Blawert C. Stress corrosion cracking and hydrogen diffusion in magnesium. Adv Eng Mater. 2006;8(8):749.

    Article  CAS  Google Scholar 

  16. Bakhsheshi-Rad HR, Hamzah E, Farahany S, Staiger MP. The mechanical properties and corrosion behavior of quaternary Mg-6Zn-0.8Mn-xCa alloys. J Mater Eng Perform. 2015;24(2):598.

    Article  CAS  Google Scholar 

  17. Wei L, Ke J, Prasadam I, Miron RJ, Lin S, Xiao Y, Zhang Y. A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos Int. 2014;25(8):2089.

    Article  CAS  Google Scholar 

  18. Bialkowski MM, Wierzbicki JG, Porter AT. Modeling of internal dose distributions during Sr-89 treatment of a patient with bone metastases. Cancer Biother Radiopharm. 1997;12(5):355.

    Article  CAS  Google Scholar 

  19. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3(6):961.

    Article  CAS  Google Scholar 

  20. Cruz MAE, Tovani CB, Favarin BZ, Soares MPR, Fukada SY, Ciancaglini P, Ramos AP. Synthesis of Sr–morin complex and its in vitro response: decrease in osteoclast differentiation while sustaining osteoblast mineralization ability. J Mater Chem B. 2018. https://doi.org/10.1039/C8TB02045K.

    Article  Google Scholar 

  21. Wu YH, He GP, Zhang Y, Liu Y, Li M, Wang XL, Li N, Li K, Zheng G, Zheng YF, Yin QS. Unique antitumor property of the Mg–Ca–Sr alloys with addition of Zn. Sci Rep. 2016;6(1):21736.

    Article  CAS  Google Scholar 

  22. Liu D, Liu Y, Huang Y, Song R, Chen M. Effects of solidification cooling rate on the corrosion resistance of Mg–Zn–Ca alloy. Prog Nat Sci: Mater Int. 2014;24(5):452.

    Article  CAS  Google Scholar 

  23. Liu YH, Mao HK, Liu PY, Xu H. The effect of cooling rate on microstructure and mechanical properties on ZM5 magnesium alloy. Foundry. 2017;66(3):286.

    Google Scholar 

  24. Yamasaki M, Hashimoto K, Hagihara K, Kawamura Y. Multimodal microstructure evolution in wrought Mg–Zn–Y alloys with high strength and increased ductility. Mater Sci Forum. 2010;654–656:615.

    Article  Google Scholar 

  25. Liu HM, Chen YG, Tang YB, Wei SH, Niu G. The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)%Sn alloys. J Alloy Compd. 2007;440(1–2):122.

    Article  CAS  Google Scholar 

  26. Zhang DF, Lan W, Ding DD, Zhang BP. Quantitative relationship between secondary dendrite arm spacing and solidification cooling rate of AZ91 magnesium alloy. Heat Treat Met. 2008;33(3):1.

    Google Scholar 

  27. Wasiur-Rahman S, Medraj M. Critical assessment and thermodynamic modeling of the binary Mg–Zn, Ca–Zn and ternary Mg–Ca–Zn systems. Intermetallics. 2009;17(10):847.

    Article  CAS  Google Scholar 

  28. Song YW, Shan DY, Chen RS, Han EH. Corrosion characterization of Mg–8Li alloy in NaCl solution. Corros Sci. 2009;51(5):1087.

    Article  CAS  Google Scholar 

  29. Song Y, Shan D, Han EH. Pitting corrosion of a rare earth Mg alloy GW93. J Mater Sci Technol. 2017;33(09):50.

    Article  Google Scholar 

  30. Zhang X, Zhang K. Research progress on corrosion behavior and mechanism of magnesium alloy. Corros Scie Protect Technol. 2015;27(1):78.

    CAS  Google Scholar 

  31. Mostaed E, Vedani M, Hashempour M, Bestetti M. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Biomatter. 2014;4(1):e28283.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jiangsu Province Achievement Transformation Project (BA2017044). The authors acknowledge the staff at GRIMAT Engineering institute Co., Ltd. for their time and instrument use. Thanks to GRINM Analysis and Testing Center at for permitting us to use their electron microscope and to my teachers and classmates for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HN., Zhang, K., Li, XG. et al. Microstructure and corrosion resistance of bone-implanted Mg–Zn–Ca–Sr alloy under different cooling methods. Rare Met. 40, 643–650 (2021). https://doi.org/10.1007/s12598-020-01368-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01368-7

Keywords

Navigation