Skip to main content

Advertisement

Log in

Self-polymerization and co-polymerization kinetics of lead methacrylate

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hydrogen nuclear magnetic resonance (H1-NMR) and X-ray diffractometer (XRD) were used to characterize the molecular and crystal structure of lead methacrylate [Pb(MAA)2] which was produced by the double decomposition reaction of lead oxide and methacrylic acid. Isothermal analysis and Kelen–Tüdõs (K–T) method were used to study the self-polymerization kinetic and the monomer reactivity ratios of Pb(MAA)2 and methyl methacrylate (MMA), respectively. By the ternary polymerization method of bulk casting using MMA, Pb(MAA)2 and gadolinium methacrylate (Gd(MAA)3) as monomers, we prepared the plexiglass which have neutron and X-ray protection property. The results show that the polymerization rate (Rp) is expressed as Rp = K[M]1.02[I]0.37 below the 10% conversion rate at 70 °C, where K is the polymerization rate constant. And in the N,N-dimethylformamide (DMF) solution, the activation energy required for Pb(MAA)2 to initiate self-polymerization by the free radicals is 74.99 kJ·mol−1. The reactivity ratios of r1 [Pb(MAA)2] and r2 (MMA) are 3.767 and 0.166. As the thickness of the material increases, the X-ray and thermal neutron shielding ability of the plexiglass containing gadolinium and lead is getting better and better.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cebulska W, Niedzwiedz A, Wierzewska. Molecular and cytogenetic damage induced by various sources of ionizing radiation (X-rays and neutrons). Ann Genet. 2001;44(1):137.

  2. Tsoulou E, Kalfas CA, Sideris EG. Conformational properties of DNA after exposure to gamma rays and neutrons. Radiat Res. 2005;163(1):90.

    Article  CAS  Google Scholar 

  3. Guzman Rincon J, Delfin Loya A, Urena Nunez F. Genotoxicity of neutrons in Drosophila melanogaster, somatic mutation and recombination induced by reactor neutrons. Radiat Res. 2005;164(2):157.

    Article  CAS  Google Scholar 

  4. DC Tang, ZS Yang, SQ Yang. Comparative study on human peripheral blood chromosome aberration, micronucleus and HPRT gene mutation induced by neutron irradiation. Su Zhou Univ J Med Sci. 2009;29(4):660.

    Google Scholar 

  5. Korjik M, Brinkmann KT, Dosovitskiy G. Compact and effective detector of the fast neutrons on a base of Ce-doped Gd3Al2Ga3O12 scintillation crystal. IEEE Trans Nucl Sci. 2019;66(1):536.

    Article  CAS  Google Scholar 

  6. Yano T, Hagiwara K, Yamada Y. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments. Nucl Instrum Methods Phys Res. 2017;845:425.

    Article  CAS  Google Scholar 

  7. Wang J, Deng LL, Guo LX, Lin BP, Yang H. Preparation and radiation shielding properties of sandwich-structured lead-containing polyimide materials. Acta Polym Sin. 2018;4:507.

    Google Scholar 

  8. Kirdsiri K, Kaewkhao J, Pokaipisit A, Chewpraditkul W, Limsuwan P. Gamma-rays shielding properties of xPbO:(100 − x)B2O3 glasses system at 662 keV. Ann Nucl Energy. 2009;36(9):1360.

    Article  CAS  Google Scholar 

  9. Kaewkhao J, Pokaipisit A, Limsuwan P. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: comparison with PbO. J Nucl Mater. 2010;399(1):38.

    Article  CAS  Google Scholar 

  10. Kirdsiri K, Kaewkhao J, Chanthima N, Limsuwan P. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: radiation shielding and optical properties. Ann Nucl Energy. 2011;38(6):1438.

    Article  CAS  Google Scholar 

  11. Rao BH, Wang WX. Development of anti-X-ray plexiglass. Plast Ind. 1989;6:5.

    Google Scholar 

  12. Jiang PP, Shen FL, Yang CL, Yin FS. Preparation and properties of radiation-proof lead-containing plexiglass. Plast Ind. 2000;4:17.

    Google Scholar 

  13. Suo QL, Lu F, Shi JW, Hong HL, Luo JP. Studies on synthesis and fluorescent property of rare earth complexes RE(ABMF)2AA and copolymers RE(ABMF)2AA-co-MMA. J Rare Earths. 2009;27(1):28.

    Article  Google Scholar 

  14. Kumar KN, Kang M, Kumar GB. Energy transfer based photoluminescence properties of co-doped (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications. Opt Mater. 2016;54:6.

    Article  Google Scholar 

  15. Okan I, Ali KD, Matissek SJ. Gadolinium borate and iron oxide bioconjugates: nanocomposites of next generation with multifunctional applications. Mater Sci Eng C. 2018;92:317.

    Article  Google Scholar 

  16. Leinweber G, Barry D, Trbovich M. Neutron capture and total cross section measurements and resonance parameters of gadolinium. Nucl Sci Eng. 2006;154(3):261.

    Article  CAS  Google Scholar 

  17. Lu JQ, Li JW, Huang JH, Zhang FF, Tang CT, Ran G. Preparation and properties of Tm2TiO5 neutron absorber material. Chin J Rare Met. 2018;42(2):191.

    Google Scholar 

  18. Wang CH, Hu LM, Wang ZF. Electrospun and in situ self-polymerization of polyacrylonitrile containing gadolinium nanofibers for thermal neutron protection. Rare Met. 2019;38(3):252.

    Article  CAS  Google Scholar 

  19. Grave DA. Process-Structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD). Surf Coat Technol. 2014;206(206):3094.

    Google Scholar 

  20. Wang CR, Wang CH, He MM, Li T, Yan CH, Zhang M. Study on preparation and properties of palladium-containing plexiglass. Rare Met. 2010;34(4):568.

    CAS  Google Scholar 

  21. Dong X, Ding Y, Wu P. Preparation of MRI-visible gadolinium methacrylate nanoparticles with low cytotoxicity and high magnetic relaxivity. J Mater Sci. 2017;52(13):7625.

    Article  CAS  Google Scholar 

  22. Zhou Yl Gu, Yz Chen Yh. Development of anti-radiation plexiglass. Chem World. 1982;8:231.

    Google Scholar 

  23. Zhang GM, Guo JM, Zhou CF, Liu YL. Research and development of radiation protection plexiglass. J South-Cent Univ Natl (Nat Sci Edit). 2004;4:30.

    Google Scholar 

  24. Wang C, Wang S, Zhang Y. Self-polymerization and co-polymerization kinetics of gadolinium methacrylate. J Rare Earths. 2018;36(3):82.

    Google Scholar 

  25. Saad GR, Eldin AFS. Isothermal cure kinetics of uncatalyzed and catalyzed diglycidyl ether of bisphenol-A/carboxylated polyester hybrid powder coating. J Therm Anal Calorim. 2012;110(3):1425.

    Article  CAS  Google Scholar 

  26. Licata M, Joyce MJ. Concealed nuclear material identification via combined fast-neutron/γ-ray computed tomography (FNGCT): a Monte Carlo study. J Instrum. 2018;13(2):P02013.

    Article  Google Scholar 

  27. Collins EA, Bares J, Billmeyer FW Jr. Experiments in Polymer Science. New York: Wiley; 1973. 8.

    Google Scholar 

  28. Mahdavian A, Abdollahi M, Bijanzadeh HR. Kinetic study of radical polymerization. III. Solution polymerization of acrylamide by 1H-NMR. J Appl Polym Sci. 2010;93(5):2007.

    Article  Google Scholar 

  29. De Sterck B, Vaneerdeweg R, Du Prez F. Solvent effects on free radical polymerization reactions: the influence of water on the propagation rate of acrylamide and methacrylamide. Ultrason Sonochem. 2009;43(2):689.

    Google Scholar 

  30. Cowie JMG. In: Allen G, Bevington JC, editors. Comprehensive Polymer Science, Part 1. vol 3, 1st ed. Oxford: Pergamon; 1989. 1.

  31. Erol I, Sarkaya S. Copolymers of methacrylic and styrenic monomer based on the naphthalene: synthesis, characterization, monomer reactivity ratios and thermal properties. J Polym Res. 2012;19(9):9957.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Aviation Science Fund (No. 2017ZF25) and the Graduate Research Innovation Fund of Yangzhou University (No. XKYCX19_066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Guo, XT., Wang, CH. et al. Self-polymerization and co-polymerization kinetics of lead methacrylate. Rare Met. 40, 736–742 (2021). https://doi.org/10.1007/s12598-019-01358-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01358-4

Keywords

Navigation