Skip to main content
Log in

Macro-micron-nano-featured surface topography of Ti-6Al-4V alloy for biomedical applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

One of the critical issues in the development of novel metallic biomaterials is the design and fabrication of metallic scaffolds and implants with hierarchical structures mimicking human bones. In this work, selective laser melting (SLM) and electrochemical anodization were applied to fabricate dense Ti-6Al-4V components with macro-micron-nanoscale hierarchical surfaces. Scanning electron microscopy (SEM), 3D laser scanning microscopy (3D LSM), contact angle video system, fluorescence microscopy and spectrophotometer were used to investigate the properties of the samples. The results reveal that the SLMed post-anodization (SLM-TNT) exhibits enhanced or at least comparable wettability, protein adsorption and biological response of mesenchymal stem cells (MSCs) in comparison with the three reference configurations, i.e., the polished Ti-6Al-4V (PO-Ti64), the SLMed Ti-6Al-4V (SLM-Ti64) and the polished Ti-6Al-4V post-anodization (PO-TNT). The improved cytocompatibility of the samples after SLM and anodization should be mainly attributed to the nanoscale tubular features, while the macro-micron-scale structures only lead to slight preference for cell attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.

    Article  CAS  Google Scholar 

  2. Liu QH, Xu XJ, Ge XL, He XH, Tao J, Zhong YY. Research of laser alloying Ti-Si-C coating on TC4 titanium alloy. Chin J Rare Met. 2016;40(6):546.

    Google Scholar 

  3. Yu SR, Yao Q, Chu HC. Morphology and phase composition of MAO ceramic coating containing Cu on Ti6Al4V alloy. Rare Met. 2017;36(8):671.

    Article  CAS  Google Scholar 

  4. Zhao D, Chang K, Ebel T, Qian M, Willumeit R, Yan M, Pyczak F. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material. J Mech Behav Biomed Mater. 2013;28(6):171.

    Article  CAS  Google Scholar 

  5. Zhao D, Chang K, Ebel T, Nie H, Willumeit R, Pyczak F. Sintering behavior and mechanical properties of a metal injection molded Ti-Nb binary alloy as biomaterial. J Alloy Compd. 2015;640:394.

    Google Scholar 

  6. Zhao D, Chang K, Ebel T, Qian M, Willumeit R, Yan M, Pyczak F. Titanium carbide precipitation in Ti-22Nb alloy fabricated by metal injection moulding. Powder Metall. 2014;57(1):2.

    Article  CAS  Google Scholar 

  7. Wang Z, Wang C, Li C, Qin Y, Zhong L, Chen B, Li Z, Liu H, Chang F, Wang J. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: a review. J Alloys Compd. 2017;717:271.

    Article  CAS  Google Scholar 

  8. Matena J, Petersen S, Gieseke M, Kampmann A, Teske M, Beyerbach M, Escobar H, Haferkamp H, Gellrich N-C, Nolte I. SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding. Int J Mol Sci. 2015;16(4):7478.

    Article  CAS  Google Scholar 

  9. Li SJ, Xu QS, Wang Z, Hou WT, Hao YL, Yang R, Murr LE. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. Acta Biomater. 2014;10(10):4537.

    Article  CAS  Google Scholar 

  10. Zhao S, Li SJ, Wang SG, Hou WT, Li Y, Zhang LC, Hao YL, Yang R, Misra RDK, Murr LE. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Mater. 2018;150:1.

    Article  Google Scholar 

  11. Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater. 2015;85:74.

    Article  CAS  Google Scholar 

  12. Luca H, Alain R, Ralph S, Tomaso Z. Additive manufacturing of metal structures at the micrometer scale. Adv Mater. 2017;29(17):1604211.

    Article  Google Scholar 

  13. Xiao M, Chen YM, Biao MN, Zhang XD, Yang BC. Bio-functionalization of biomedical metals. Mater Sci Eng C. 1057;2017:70.

    Google Scholar 

  14. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, Mulier M, Schrooten J, Weinans H, Zadpoor AA. Bone regeneration performance of surface-treated porous titanium. Biomaterials. 2014;35(24):6172.

    Article  CAS  Google Scholar 

  15. Xu JY, Chen XS, Zhang CY, Liu Y, Wang J, Deng FL. Improved bioactivity of selective laser melting titanium: surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation. Mater Sci Eng C. 2016;68:229.

    Article  CAS  Google Scholar 

  16. Nune K, Misra R, Gai X, Li S, Hao Y. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. J Biomater Appl. 2018;32(8):1032.

    Article  CAS  Google Scholar 

  17. Beltrán-Partida E, Valdéz-Salas B, Moreno-Ulloa A, Escamilla A, Curiel MA, Rosales-Ibáñez R, Villarreal F, Bastidas DM, Bastidas JM. Improved in vitro angiogenic behavior on anodized titanium dioxide nanotubes. J Nanobiotechnol. 2017;15(1):10.

    Article  Google Scholar 

  18. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127.

    Article  CAS  Google Scholar 

  19. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013;37(12):2491.

    Article  Google Scholar 

  20. Maegawa N, Kawamura K, Hirose M, Yajima H, Takakura Y, Ohgushi H. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regener Med. 2007;1(4):306.

    Article  CAS  Google Scholar 

  21. Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf B. 2006;49(2):136.

    Article  CAS  Google Scholar 

  22. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells. 2006;90(14):2011.

    Article  CAS  Google Scholar 

  23. Mohammed MT, Khan ZA, Siddiquee AN. Surface modifications of titanium materials for developing corrosion behavior in human body environment: a review. Procedia Mater Sci. 2014;6:1610.

    Article  CAS  Google Scholar 

  24. Baier RE. Surface behaviour of biomaterials: the theta surface for biocompatibility. J Mater Sci Mater Med. 2006;17(11):1057.

    Article  CAS  Google Scholar 

  25. Silva-Bermudez P, Rodil SE. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol. 2013;233:147.

    Article  CAS  Google Scholar 

  26. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28(8):988.

    Article  CAS  Google Scholar 

  27. Jia Z, Xiu P, Xiong P, Zhou W, Cheng Y, Wei S, Zheng Y, Xi T, Cai H, Liu Z, Wang C, Zhang W, Li Z. Additively manufactured macroporous titanium with silver-releasing micro-/nanoporous surface for multipurpose infection control and bone repair: a proof of concept. ACS Appl Mater Interfaces. 2016;8(42):28495.

    Article  CAS  Google Scholar 

  28. Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, Wu Z, Chu PK. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34(1):19.

    Article  Google Scholar 

  29. Zhao D, Lei L, Wang S, Nie H. Understanding cell homing-based tissue regeneration from the perspective of materials. J Mater Chem B. 2015;3(37):7319.

    Article  CAS  Google Scholar 

  30. Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci. 2009;106(7):2130.

    Article  CAS  Google Scholar 

  31. Zhang C, Xie B, Zou Y, Zhu D, Lei L, Zhao D, Nie H. Zero-dimensional, one-dimensional, two-dimensional and three- dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev. 2018. https://doi.org/10.1016/j.addr.2018.06.020.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51604104), Shenzhen Science and Technology Innovation Commission (No. ZDSYS201703031748354) and the National Science Foundation of Guangdong Province (No. 2016A030313756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Peng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, DP., Tang, JC., Nie, HM. et al. Macro-micron-nano-featured surface topography of Ti-6Al-4V alloy for biomedical applications. Rare Met. 37, 1055–1063 (2018). https://doi.org/10.1007/s12598-018-1150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1150-7

Keywords

Navigation