Skip to main content
Log in

Activating AlN thin film by introducing Co nanoparticles as a new anode material for thin-film lithium batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

AlN/Co nanocomposite thin films were fabricated by pulsed laser deposition and investigated as new anode materials for lithium-ion batteries for the first time. The combination of electrochemically inactive AlN and Co in nanometer scale boosted the electrochemical performance of the thin films surprisingly. A high reversible capacity of 555 mAh·g−1 after 100 discharge–charge cycles at a current density of 500 mA·g−1 is obtained for the AlN/Co nanocomposite thin films, and 372 mAh·g−1 can be retained at a high rate up to 16C, exhibiting promising cycle stability and rate capability. The electrochemical reaction mechanism study reveals that Co nanoparticles could not only provide high electronic conductivity for the thin films, which facilitate the thorough decomposition of AlN in the initial discharge process, but also react with Li3N to form a new species Co2N during charge process, thus ensuring large capacity and high reversibility of AlN/Co nanocomposite thin films in subsequent cycles. This study provides a new perspective to design advanced electrode materials for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.

    Article  Google Scholar 

  2. Liu CF, Neale ZG, Cao GZ. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today. 2016;19(2):109.

    Article  Google Scholar 

  3. Murphy DW, Christian PA. Solid state electrodes for high energy batteries. Science. 1979;205(4407):651.

    Article  Google Scholar 

  4. Hou YL, Wang RM, Zhang JT. Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. Rare Met. 2017;36(5):305.

    Article  Google Scholar 

  5. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252.

    Article  Google Scholar 

  6. Balaji S, Ananda Kumar M, Manichandran T, Mutharasu D. Electrodeposited three dimensional tin nano wire anode for thin film Li-ion micro batteries. Russ J Electrochem. 2016;52(3):226.

    Article  Google Scholar 

  7. Wu J, Lau WM, Geng DS. Recent progress in cobalt-based compounds as high-performance anode materials for lithium ion batteries. Rare Met. 2017;36(5):307.

    Article  Google Scholar 

  8. Salian GD, Lebouin C, Demoulin A, Lepihin MS, Maria S, Galeyeva AK, Kurbatov AP, Djenizian T. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries. J Power Source. 2017;340:242.

    Article  Google Scholar 

  9. Zargouni Y, Deheryan S, Radisic A, Alouani K, Vereecken MP. Electrolytic manganese dioxide coatings on high aspect ratio micro-pillar arrays for 3D thin film lithium ion batteries. Nanomaterials. 2017;7(6):126.

    Article  Google Scholar 

  10. Quan Z, Hirayama M, Sato D, Zheng Y, Yano T, Hara K, Suzuki K, Hara M, Kanno R. Effect of excess Li2S on electrochemical properties of amorphous Li3PS4 films synthesized by pulsed laser deposition. J Am Ceram Soc. 2017;100(2):746.

    Article  Google Scholar 

  11. Sun Q, Fu ZW. An anode material of CrN for lithium-ion batteries. Electrochem Solid State Lett. 2007;10(8):A189.

    Article  Google Scholar 

  12. Zhou YN, Zhang H, Xue MZ, Wu CL, Wu XJ, Fu ZW. The electrochemistry of nanostructured In2O3 with lithium. J Power Source. 2006;162(2):1373.

    Article  Google Scholar 

  13. Xie QS, Lin L, Ma YT, Yang JR, Huang J, Wang LS, Peng DL. Facile fabrication of ZnO–CuO porous hybrid microspheres as lithium ion battery anodes with enhanced cyclability. Rare Met. 2017;36(5):403.

    Article  Google Scholar 

  14. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science. 1997;276(5317):1395.

    Article  Google Scholar 

  15. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496.

    Article  Google Scholar 

  16. Zhou YN, Xue MZ, Fu ZW. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J Power Source. 2013;234:310.

    Article  Google Scholar 

  17. Lapp T, Skaarup S, Hooper A. Ionic conductivity of pure and doped Li3N. Solid State Ionics. 1983;11(2):97.

    Article  Google Scholar 

  18. Huang H, Gao S, Wu AM, Cheng K, Li XN, Gao XX, Zhao JJ, Dong XL, Cao GZ. Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy. 2017;31:74.

    Article  Google Scholar 

  19. Balogun M, Zeng Y, Qiu W, Luo Y, Onasanya A, Olaniyi TK, Tong Y. Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. J Mater Chem A. 2016;4(25):9844.

    Article  Google Scholar 

  20. Caicedo JC, Zambrano G, Aperador W, Escobar-Alarcon L, Camps E. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films. Appl Surf Sci. 2011;258(1):312.

    Article  Google Scholar 

  21. Guzman RC, Yang J, Ming-Cheng Cheng M, Salley SO, Ng KYS. High capacity silicon nitride-based composite anodes for lithium ion batteries. J Mater Chem A. 2014;2(35):14577.

    Article  Google Scholar 

  22. Dong S, Chen X, Gu L, Zhou XH, Xu HX, Wang HB, Liu ZH, Han PX, Yao JH, Wang L, Cui GL, Chen LQ. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl Mater Inter. 2011;3(1):93.

    Article  Google Scholar 

  23. Fu ZW, Wang Y, Yue XL, Zhao SL, Qin QZ. Electrochemical reactions of lithium with transition metal nitride electrodes. J Phys Chem B. 2004;108(7):2236.

    Article  Google Scholar 

  24. Nandi DK, Sen UK, Sinha S, Dhara A, Mitra S, Sarkar SK. Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode. Phys Chem Chem Phys. 2015;17(26):17445.

    Article  Google Scholar 

  25. Pereira N, Dupont L, Tarascon JM, Klein LC, Amatucci GG. Electrochemistry of Cu3N with lithium: a complex system with parallel processes. J Electrochem Soc. 2003;150(9):A1273.

    Article  Google Scholar 

  26. Pereira N, Klein LC, Amatucci GG. The electrochemistry of Zn3N2 and LiZnN: a lithium reaction mechanism for metal nitride electrodes. J Electrochem Soc. 2002;149(3):A262.

    Article  Google Scholar 

  27. Zhou YN, Liu C, Chen HJ, Zhang L, Li WJ, Fu ZW. Electrochemistry of V2ON with lithium. Electrochim Acta. 2011;56(16):5532.

    Article  Google Scholar 

  28. Anaraki-Ardakani H. A computational study on the application of AlN nanotubes in Li-ion batteries. Phys Lett A. 2017;381(11):1041.

    Article  Google Scholar 

  29. Kusunose T, Sekino T. Improvement in fracture strength in electrically conductive AlN ceramics with high thermal conductivity. Ceram Int. 2016;42(11):13183.

    Article  Google Scholar 

  30. Pan Y, Wu XJ, Zhang ZQ, Fu ZW, Zhou YN. Binder and carbon-free SbSn-P nanocomposite thin films as anode materials for sodium-ion batteries. J Alloys Compd. 2017;714(Supplement C):348.

    Article  Google Scholar 

  31. Zhou YN, Zhang H, Wu XJ, Fu ZW. Li3N–Co nanocomposite: a new promising lithium-ion storage material. Electrochem Solid State Lett. 2008;11(4):A51.

    Article  Google Scholar 

  32. Zhou YN, Wang XJ, Lee HS, Nam KW, Yang XQ, Haas O. Electrochemical investigation of Li–Al anodes in oligo(ethylene glycol) dimethyl ether/LiPF6. J Appl Electrochem. 2011;41(3):271.

    Article  Google Scholar 

  33. Zhou YN, Liu WY, Xue MZ, Yu L, Wu CL, Wu XJ, Fu ZW. LiF/Co nanocomposite as a new Li storage material. Electrochem Solid State Lett. 2006;9(3):A147.

    Article  Google Scholar 

  34. Zhou YN, Sina M, Pereira N, Yu X, Amatucci GG, Yang XQ, Cosandey F, Nam KW. FeO0.7F1.3/C nanocomposite as a high-capacity cathode material for sodium-ion batteries. Adv Funct Mater. 2015;25(5):696.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51502039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ning Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Niu, XY., Du, XQ. et al. Activating AlN thin film by introducing Co nanoparticles as a new anode material for thin-film lithium batteries. Rare Met. 37, 625–632 (2018). https://doi.org/10.1007/s12598-018-1013-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1013-2

Keywords

Navigation