Skip to main content
Log in

Using coal fly ash-based geopolymer to immobilize Cd from lead fuming furnace slag

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lead fuming furnace slag (LFFS) is a by-product of lead metal production, which is a toxic solid waste according to toxicity characteristic leaching procedure (TCLP) test. It was investigated the feasibility of preparation of geopolymer using coal fly ash (CFA) and LFFS and the immobilization efficiency of Cd in geopolymer. The synthesized geopolymer samples were examined by compressive strength, Fourier transform transmission infrared spectroscopy (FTIR) spectra, X-ray diffraction (XRD) and backscattered electron (BSE) microscope. There is a certain mass ratio (2:3) of the LFFS to the CFA at which the compressive strength of the geopolymeric matrix is the highest. Leaching test shows that Cd in LFFS can be effectively immobilized in the geopolymer structure. Geopolymerization is not only a potential technological solution for reusing LFFS but also an effective immobilization method for LFFS treatment and disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jones R. Economic and environmentally beneficial treatment of slags in DC arc furnaces. In: Proceedings of the VII International Conference on Molten Slags. Johannesburg; 2004. 363.

  2. Conesa HM, Pérez Chacón JA, Arnaldos R, Moreno Caselles J, Faz Cano Á. In situ heavy metal accumulation in lettuce growing near a former mining waste disposal area: implications for agricultural management. Water Air Soil Pollut. 2009;208(1–4):377.

    Google Scholar 

  3. Yang J, Zhang SG, Pan DA, Liu B, Wu CL, Volinsky AA. Treatment method of hazardous pickling sludge by reusing as glass–ceramics nucleation agent. Rare Met. 2015;35(3):269.

    Article  Google Scholar 

  4. Li M, Zhang Y, Wang X-H, Yang J-G, Qiao S, Zheng S-L, Zhang Y. Extraction of copper, zinc and cadmium from copper–cadmium-bearing slag by oxidative acid leaching process. Rare Met. 2016;. doi:10.1007/s12598-016-0759-7.

    Article  Google Scholar 

  5. Pacheco Torgal F, Castro Gomes J, Jalali S. Alkali-activated binders: a review. Constr Build Mater. 2008;22(7):1305.

    Article  Google Scholar 

  6. Pacheco Torgal F, Castro Gomes J, Jalali S. Alkali-activated binders: a review. Part 2. About materials and binders manufacture. Constr Build Mater. 2008;22(7):1315.

    Article  Google Scholar 

  7. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L. The potential use of geopolymeric materials to immobilise toxic metals: part I. Theory Appl Miner Eng. 1997;10(7):659.

    Article  Google Scholar 

  8. Palomo A, dela Fuente JIL. Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes. Cem Concr Res. 2003;33(2):281.

    Article  CAS  Google Scholar 

  9. Lancellotti I, Kamseu E, Michelazzi M, Barbieri L, Corradi A, Leonelli C. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag. 2010;30(4):673.

    Article  CAS  Google Scholar 

  10. Zheng L, Wang W, Shi Y. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere. 2010;79(6):665.

    Article  CAS  Google Scholar 

  11. Moncea AM, Georgescu M, Melinescu A, Stoleriu S, Moncea A. Hardening processes and hydrates in alkali-activated slag and geopolymer with Pb content. Rev Rom Mater Rom J Mater. 2012;42(4):356.

    CAS  Google Scholar 

  12. Duxson P, Provis JL, Lukey GC, van Deventer JSJ. The role of inorganic polymer technology in the development of ‘green concrete’. Cem Concr Res. 2007;37(12):1590.

    Article  CAS  Google Scholar 

  13. Fernández Pereira C, Luna Y, Querol X, Antenucci D, Vale J. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel. 2009;88(7):1185.

    Article  Google Scholar 

  14. Jiang X, Li J, Ma H, Zhou W, Tong L. Temperature feature on synthesizing mullite whiskers from coal fly ash and andalusite-sericite phyllite. Rare Met. 2011;30(S1):379.

    Article  CAS  Google Scholar 

  15. Xu H, Gong WL, Syltebo L, Izzo K, Lutze W, Pegg IL. Effect of blast furnace slag grades on fly ash based geopolymer waste forms. Fuel. 2014;133:332.

    Article  CAS  Google Scholar 

  16. Albitar M, Mohamed Ali MS, Visintin P, Drechsler M. Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr Build Mater. 2015;83:128.

    Article  Google Scholar 

  17. Kalina L, Koplik J, Soukal F, Masilko J, Jaskowiecova L. Potential uses of geopolymers to immobilize toxic metals from by-products materials. Environ Eng Manag J. 2012;11(3):579.

    Article  CAS  Google Scholar 

  18. Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res. 2010;40(9):1341.

    Article  CAS  Google Scholar 

  19. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L. Factors affecting the immobilization of metals in geopolymerized flyash. Metall Mater Trans B. 1998;29(1):283.

    Article  Google Scholar 

  20. Li Q, Sun Z, Tao D, Xu Y, Li P, Cui H, Zhai J. Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. J Hazard Mater. 2013;262:325.

    Article  CAS  Google Scholar 

  21. Alvarez-Ayuso E, Querol X, Plana F, Alastuey A, Moreno N, Izquierdo M, Font O, Moreno T, Diez S, Vazquez E, Barra M. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes. J Hazard Mater. 2008;154(1–3):175.

    Article  CAS  Google Scholar 

  22. Ahmari S, Zhang LY. Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr Build Mater. 2013;44:743.

    Article  Google Scholar 

  23. Yunsheng Z, Wei S, Zongjin L. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Appl Clay Sci. 2010;47(3–4):271.

    Article  Google Scholar 

  24. Komnitsas K, Zaharaki D, Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl Clay Sci. 2013;73(2):103.

    Article  CAS  Google Scholar 

  25. Komnitsas K, Zaharaki D, Perdikatsis V. Geopolymerisation of low calcium ferronickel slags. J Mater Sci. 2007;42(9):3073.

    Article  CAS  Google Scholar 

  26. Lee WKW, van Deventer JSJ. The effects of inorganic salt contamination on the strength and durability of geopolymers. Coll Surf A Physicochem Eng Asp. 2002;211(2–3):115.

    Article  CAS  Google Scholar 

  27. Zhang J, Provis JL, Feng D, van Deventer JS. Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+). J Hazard Mater. 2008;157(2–3):587.

    Article  CAS  Google Scholar 

  28. Perera DS, Cashion JD, Blackford MG, Zhang ZM, Vance ER. Fe speciation in geopolymers with Si/Al molar ratio of similar to 2. J Eur Ceram Soc. 2007;27(7):2697.

    Article  CAS  Google Scholar 

  29. Phair JW, Van Deventer JSJ. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner Eng. 2001;14(3):289.

    Article  CAS  Google Scholar 

  30. Lee WKW, van Deventer JSJ. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem Concr Res. 2002;32(4):577.

    Article  CAS  Google Scholar 

  31. van Deventer JS, Provis JL, Duxson P, Lukey GC. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J Hazard Mater. 2007;139(3):506.

    Article  Google Scholar 

  32. Shi C, Fernandez Jimenez A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater. 2006;137(3):1656.

    Article  CAS  Google Scholar 

  33. Yip CK, Lukey GC, van Deventer JSJ. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res. 2005;35(9):1688.

    Article  CAS  Google Scholar 

  34. Yip CK, van Deventer JSJ. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci. 2003;38(18):3851.

    Article  CAS  Google Scholar 

  35. Guo X, Hu W, Shi H. Microstructure and self-solidification/stabilization (S/S) of heavy metals of nano-modified CFA–MSWIFA composite geopolymers. Constr Build Mater. 2014;56:81.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Project of Scientific and Technical Support Program of China (No. 2012BAC02B01), the National Natural Science Foundation of China (Nos. U1360202, 51472030 and 51502014), the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-15-050A2, and FRF-TP-16-027A3), Innovation project of Yunnan Province New Material Preparation and Processing Key Laboratory (No 2016cx05) and the China Postdoctoral Science Foundation Funded Project (No. 2014M560885).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Liu, B. & Zhang, SG. Using coal fly ash-based geopolymer to immobilize Cd from lead fuming furnace slag. Rare Met. 42, 1056–1060 (2023). https://doi.org/10.1007/s12598-017-0955-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0955-0

Keywords

Navigation