Skip to main content
Log in

Pyrolyzed bacterial cellulose/graphene oxide sandwich interlayer for lithium–sulfur batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Herein, a facile strategy for the synthesis of sandwich pyrolyzed bacterial cellulose (PBC)/graphene oxide (GO) composite was reported simply by utilizing the large-scale regenerated biomass bacterial cellulose as precursor. The unique and delicate structure where three-dimensional interconnected bacterial cellulose (BC) network embedded in two-dimensional GO skeleton could not only work as an effective barrier to retard polysulfide diffusion during the charge/discharge process to enhance the cyclic stability of the Li–S battery, but also offer a continuous electron transport pathway for the improved rate capability. As a result, by utilizing pure sulfur as cathodes, the Li–S batteries assembled with PBC/GO interlayer can still exhibit a capacity of nearly 600 mAh·g−1 at 3C and only 0.055% capacity decay per cycle can be observed over 200 cycles. Additionally, the cost-efficient and environment-friendly raw materials may enable the PBC/GO sandwich interlayer to be an advanced configuration for Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Evers S, Nazar LF. New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res. 2013;46(5):1135.

    Article  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2012;11(2):19.

    Google Scholar 

  3. Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater. 2009;8(6):500.

    Article  Google Scholar 

  4. Zhang C, Lv W, Zhang W, Zheng X, Wu MB, Wei W, Tao Y, Li Z, Yang QH. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater. 2014;4(7):175.

    Google Scholar 

  5. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2013;46(5):1125.

    Article  Google Scholar 

  6. Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev. 2013;42(7):3018.

    Article  Google Scholar 

  7. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.

    Article  Google Scholar 

  8. Zhou G, Li L, Wang DW, Shan XY, Pei S, Li F, Cheng HM. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater. 2015;27(4):590.

    Article  Google Scholar 

  9. Wang W, Shi Y, Li M, Wang Z, Wu S, Lyu F, Shang C, Lu Z. Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction. RSC Adv. 2016;6(112):110758.

    Article  Google Scholar 

  10. Zhang X, Zhang X, Lin Z, Yu M, Lu X, Tong Y. Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater. 2016;59(6):475.

    Article  Google Scholar 

  11. Li M, Tang M, Deng J, Wang Y. Nitrogen-doped flower-like porous carbon materials directed by in situ, hydrolysed MgO: promising support for Ru nanoparticles in catalytic hydrogenations. Nano Res. 2016;10:3129.

    Article  Google Scholar 

  12. Shang C, Li M, Wang Z, Lu Z. Electrospun nitrogen-doped carbon nanofibers encapsulating cobalt nanoparticles as efficient oxygen reduction reaction catalysts. Chem Electro Chem. 2016;3(9):1437.

    Google Scholar 

  13. Zhang X, Zhang H, Lin Z, Zafar ZA, Yu M, Lu X, Tong Y. Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci China Mater. 2016;59(6):475.

    Article  Google Scholar 

  14. Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium–sulfur batteries. Chem Rev. 2014;114(23):11751.

    Article  Google Scholar 

  15. Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy. 2016;1(9):16132.

    Article  Google Scholar 

  16. Chen S, Huang X, Liu H, Sun B, Yeoh W, Li K, Zhang J, Wang G. Batteries: 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium–sulfur batteries. Adv Energy Mater. 2014;4(8):1079.

    Google Scholar 

  17. Gu X, Lai C, Liu F, Yang W, Hou Y, Zhang S. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J Mater Chem A. 2015;3(18):9502.

    Article  Google Scholar 

  18. Wang DW, Zeng Q, Zhou G, Yin L, Li F, Cheng HM, Gentle IR, Lu GQM. Carbon-sulfur composites for Li–S batteries: status and prospects. J Mater Chem A. 2013;1(33):9382.

    Article  Google Scholar 

  19. Qie L, Manthiram A. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv Mater. 2015;27(10):1694.

    Article  Google Scholar 

  20. Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S. Microporous bamboo biochar for lithium–sulfur batteries. Nano Res. 2015;8(1):129.

    Article  Google Scholar 

  21. Wei SZ, Li W, Cha JJ, Zheng G, Yang Y, Mcdowell MT, Hsu PC, Cui Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun. 2013;4(4):1331.

    Google Scholar 

  22. Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruna HD. Yolk-shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J Am Chem Soc. 2013;135(44):16736.

    Article  Google Scholar 

  23. Su YS, Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun. 2012;3(6):542.

    Google Scholar 

  24. Zhou G, Pei S, Li L, Wang DW, Wang S, Huang K, Yin LC, Li F, Cheng HM. Batteries: a graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries. Adv Mater. 2014;26(4):664.

    Article  Google Scholar 

  25. Chung SH, Manthiram A. A polyethylene glycol- supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater. 2014;26(43):7352.

    Article  Google Scholar 

  26. Yang W, Wang JW, Si C, Peng Z, Frenzel J, Eggeler G, Zhang Z. [001] Preferentially-oriented 2D tungsten disulfide nanosheets as anode materials for superior lithium storage. J Mater Chem A. 2015;3(34):17811.

    Article  Google Scholar 

  27. Liang M, Wang J, Luo B, Qiu T, Zhi L. High-efficiency and room-temperature reduction of graphene oxide: a facile green approach towards flexible graphene films. Small. 2012;8(8):1180.

    Article  Google Scholar 

  28. Wang J, Liang M, Fang Y, Qiu T, Zhang J, Zhi L. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv Mater. 2012;24(21):2874.

    Article  Google Scholar 

  29. Wang X, Kong D, Zhang Y, Wang B, Li X, Qiu T, Song Q, Ning J, Song Y, Zhi L. All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale. 2016;8(17):9146.

    Article  Google Scholar 

  30. Wang X, Kong D, Zhang Y, Wang B, Li X, Qiu T, Zhi L. All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale. 2016;8(17):9146.

    Article  Google Scholar 

  31. Kong D, He H, Song Q, Wang B, Lv W, Yang QH, Chen S, Zhi L. Rational design of MoS2@graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy Environ Sci. 2014;7(10):3320.

    Article  Google Scholar 

  32. Wang B, Li X, Luo B, Yang J, Wang X, Song Q, Hao C, Qiu J. Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small. 2013;9(14):2399.

    Article  Google Scholar 

  33. Zhang MD, Yu C, Zhao CT, Song XD, Han XT, Liu SH, Hao C, Qiu JS. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 2016;5:223.

    Article  Google Scholar 

  34. Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano. 2015;9(3):3002.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Ministry of Science and Technology of China (No. 2012CB933403), the National Natural Science Foundation of China (Nos. 51425302 and 51302045) and the Beijing Municipal Science and Technology Commission (No. Z121100006812003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Jie Zhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, YD., Xiao, ZC., Miao, LX. et al. Pyrolyzed bacterial cellulose/graphene oxide sandwich interlayer for lithium–sulfur batteries. Rare Met. 36, 418–424 (2017). https://doi.org/10.1007/s12598-017-0906-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0906-9

Keywords

Navigation