Skip to main content
Log in

Preparation and electrochromism of pyrochlore-type tungsten oxide film

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Pyrochlore-type WO3 powder was synthesized via hydrothermal method using aqueous sodium tungstate solution and oxalic acid as raw materials. The as-prepared powder was made into a soliquoid, from which films were made by dip coating process with indium–tin oxide (ITO). The obtained films were characterized by thermogravimetric and differential thermal analysis (TG–DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), chronoamperometry (CA) and ultraviolet–visible (UV–Vis) absorption. Results show that the crystal of the pyrochlore-type WO3 powder is perfect. When the calcination temperature rises from room temperature to 500 °C, the pyrochlore-type structure first becomes deformed, then it is destroyed and turns into amorphous phase, finally it will completely convert to WO3 with a monoclinic structure. Electrochemical and optical tests demonstrate that the film calcined at 300 °C exhibits the best electrochromic performance and has a coloration efficiency of up to 68.5 cm2·C−1 at 884 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Granqvist CG. Electrochromic devices. J Eur Ceram Soc. 2005;25(12):2907.

    Article  Google Scholar 

  2. Cai GF, Tu JP, Gu CD, Zhang JH, Chen J, Zhou D, Shi SJ, Wang XL. One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance. J Mater Chem A. 2013;1(13):4286.

    Article  Google Scholar 

  3. Zhang J, Tu JP, Cai GF, Du GH, Wang XL, Liu PC. Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochim Acta. 2013;99(6):1.

    Google Scholar 

  4. Lin F, Cheng JF, Engtrakul C, Dillon AC, Nordlund D, Moore RG, Weng TC, Williams SKR, Richards RM. In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics. J Mater Chem. 2012;22(33):16817.

    Article  Google Scholar 

  5. Cai GF, Gu CD, Zhang J, Liu PC, Wang XL, You YH, Tu JP. Ultra-fast electrochromic switching of nanostructured NiO films electrodeposited from choline chloride-based ionic liquid. Electrochim Acta. 2013;87(1):341.

    Article  Google Scholar 

  6. Liao CC, Chen FR, Kai JJ. Electrochromic properties of nanocomposite WO3 films. Sol Energy Mater Sol Cells. 2007;91(14):1282.

    Article  Google Scholar 

  7. Cai GF, Tu JP, Zhang J, Mai YJ, Lu Y, Gu CD, Wang XL. An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale. 2012;4(18):5724.

    Article  Google Scholar 

  8. Yao ZJ, Di JT, Yong ZZ, Zhao ZG, Li QW. Aligned coaxial tungsten oxide-carbon nanotube sheet: a flexible and gradient electrochromic film. Chem Commun. 2012;48(66):8252.

    Article  Google Scholar 

  9. Lampert CM. Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells. 2003;76(4):489.

    Article  Google Scholar 

  10. Cai GF, Tu JP, Zhou D, Wang XL, Gu CD. Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol Energy Mater Sol Cells. 2014;124(5):103.

    Article  Google Scholar 

  11. Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H. Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochim Acta. 2008;53(18):5721.

    Article  Google Scholar 

  12. Wang ZC, Xu XF. Electrochromic properties of TiO2-doped WO3 films spin-coated from Ti-stabilized peroxotungstic acid. Electrochim Acta. 2001;46(13–14):1951.

    Article  Google Scholar 

  13. Zhang J, Tu JP, Zhang D, Qiao YQ, Xia XH, Wang XL, Gu CD. Multicolor electrochromic polyaniline-WO3 hybrid thin films: one-pot molecular assembling synthesis. J Mater Chem. 2011;21(43):17316.

    Article  Google Scholar 

  14. Lu YX, Liu L, Mandler D, Lee PS. High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices. J Mater Chem C. 2013;1(44):7380.

    Article  Google Scholar 

  15. Cai GF, Tu JP, Zhou D, Zhang JH, Xiong QQ, Zhao XY, Wang XL, Gu CD. Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. J Phys Chem C. 2013;117(31):15967.

    Article  Google Scholar 

  16. Zhang J. Tungsten trioxide based electrochromic films and devices. Hangzhou: Zhejiang University; 2012. 4.

    Google Scholar 

  17. Li S, El-Shall MS. Synthesis and characterization of photochromic molybdenum and tungsten oxide nanoparticles. Nanostruct Mater. 1999;12(1):215.

    Article  Google Scholar 

  18. Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ. Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J Power Sources. 2001;102(1–2):172.

    Article  Google Scholar 

  19. Aliwell SR, Halsall JF, Pratt KFE, O’Sullivan J, Jones RL, Cox RA, Utembe SR, Hansford GM, Williams DE. Ozone sensors based on WO3: a model for sensor drift and a measurement correction method. Meas Sci Technol. 2001;12(12):684.

    Article  Google Scholar 

  20. Deb SK. A novel electrophotographic system. Appl Opt. 1969;8(S1):192.

    Article  Google Scholar 

  21. Granqvist CG. Handbook of Inorganic Electrochromic Materials. Amsterdam: Elsevier Science; 1995. 13.

    Google Scholar 

  22. Deepa M, Kar M, Agnihotry SA. Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films. 2004;468(1):32.

    Article  Google Scholar 

  23. Cai GF, Tu JP, Zhou D, Li L, Zhang JH, Wang XL, Gu CD. The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. Cryst Eng Comm. 2014;16(30):6866.

    Article  Google Scholar 

  24. Cai GF, Tu JP, Zhou D, Zhang JH, Wang XL, Gu CD. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Sol Energy Mater Sol Cells. 2014;122(3):51.

    Article  Google Scholar 

  25. Cai GF, Zhou D, Xiong QQ, Zhang JH, Wang XL, Gu CD, Tu JP. Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Sol Energy Mater Sol Cells. 2013;117(10):231.

    Article  Google Scholar 

  26. Li WZ, Li J, Wang X, Xiao J, Chen QY. Preparation and characterization of cubic tungsten oxide thin films. J Inorgan Mater. 2010;25(12):1318.

    Article  Google Scholar 

  27. Coucou A, Figlarz M. A new tungsten oxide with 3D tunnels: WO3 with the pyrochlore-type structure. Solid State Ionics. 1988;28–30:1762.

    Article  Google Scholar 

  28. Li YJ, Tsai PP. Lacunar pyrochlore-type tungsten oxides as humidity-sensing materials. Solid State Ionics. 1996;86–88(28):1001.

    Article  Google Scholar 

  29. Zheng Y, Chen G, Yu Y, Wang Y, Sun J, Xu H, Zhou Y. Solvothermal synthesis of pyrochlore-type cubic tungsten trioxide hemihydrate and high photocatalytic activity. N J Chem. 2014;38(7):3071.

    Article  Google Scholar 

  30. Yang Y, Shi Q, Lu L, Zhang H. Study on Pt–WO3–C composite catalysts with pyrochlore-type tungsten trioxide as cathodic catalysts. Power Technol. 2011;35(8):949.

    Google Scholar 

  31. Guo JD, Li YJ, Whittingham MS. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film. J Power Sources. 1995;54(2):461.

    Article  Google Scholar 

  32. Li XB, Peng ZH, Li JP. Process for preparation of tungsten oxide hydrate from sodium aluminate solution. China Patent: 201010022046; 2010.

  33. Peng ZH, Wu X, Zhou QS, Yu XJ, Qi TG, Liu GH, Li XB. Preparation and characterization of pyrochlore WO3. Chin J Nonferrous Metals. 2012;22(2):579.

    Google Scholar 

  34. Guo JD, Reis KP, Whittingham MS. Open structure tungstates: synthesis, reactivity and ionic mobility. Solid State Ionics. 1992;53–56:305.

    Article  Google Scholar 

  35. Wu X. Research on the pyrochlore WO3 prepared from sodium tungstate solution. Changsha: Central South University; 2012. 38.

    Google Scholar 

  36. Xu YM, Cheng XL, Gao S, Huo LH, Zhao JG. Preparation and characterization of pyrochlore WO3 powder. J Harb Univ Sci Technol. 2002;7(6):70.

    Google Scholar 

  37. Xu YX, Huo LH, Zhao H, Gao S, Zhao JG. Hydrothermal synthesis and photochromism property of superfine powders of metastable tungsten oxide. Chin J Inorgan Chem. 2005;21(4):538.

    Google Scholar 

  38. Ali C, Ali D, Michel F, Marcel T. On the lacunar structure of pyrochlore-type WO3. J Solid State Chem. 1992;99(2):283.

    Article  Google Scholar 

  39. Zayim EO. Optical and electrochromic properties of sol-gel made anti-reflective WO3–TiO2 films. Sol Energy Mater Sol Cells. 2005;87(1):695.

    Article  Google Scholar 

  40. Patil PS, Mujawar SH, Inamdar AI, Shinde PS, Deshmukh HP, Sadale SB. Structural, electrical and optical properties of TiO2 doped WO3 thin films. Appl Surf Sci. 2005;252(5):1643.

    Article  Google Scholar 

  41. Faughnan BW, Crandall RS, Heyman PM. Electrochromism in WO, amorphous films. Br Tax Rev. 1975;36:465.

    Google Scholar 

  42. Granqvist CG. Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mater Sol Cells. 2000;60(3):201.

    Article  Google Scholar 

  43. Shang FL. Research on the preparation, structure and properties of electrochromism WO3. Wuhan: Wuhan University of Technology; 2007. 60.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51274243) and the Project of Innovation-Driven Plan in Central South University, China (No. 2015CX001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Sheng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, QS., Chen, YK., Li, XB. et al. Preparation and electrochromism of pyrochlore-type tungsten oxide film. Rare Met. 37, 604–612 (2018). https://doi.org/10.1007/s12598-017-0886-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0886-9

Keywords

Navigation