Skip to main content
Log in

Dehydroxylation action on surface of TiO2 films restrained by nitrogen carrier gas during atomic layer deposition process

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition (ALD) was investigated by X-ray photoelectron spectroscopy (XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett JM, Pelletier E, Albrand G, Borgogno JP, Lazarides B, Carnigilia CK, Schmell RA, Allen TH, Tutter-Hart T, Guenther KH, Saxer A. Comparison of the properties of titanium dioxide films prepared using various techniques. Appl Opt. 1989;28(16):3303.

    Article  Google Scholar 

  2. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48(5–8):53.

    Article  Google Scholar 

  3. Gratzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem. 2005;44(20):6841.

    Article  Google Scholar 

  4. Rausch N, Burte EP. Thin high-dielectric TiO2 films prepared by low pressure MOCVD. Microelectron Eng. 1992;19(1–4):725.

    Article  Google Scholar 

  5. Xu Q, Liu F. Transformation behavior and shape memory effect of Ti50−x Ni48Fe2Nb x alloys by aging treatment. Rare Met. 2012;31(4):311.

    Article  Google Scholar 

  6. Aarik J, Aidla A, MaÈndar H, Uustare T. Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism. Appl Surf Sci. 2001;172(1–2):148.

    Article  Google Scholar 

  7. Cameron MA, Gartland IP, Smith JA, Diaz SF, George SM. Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: pore reduction and effect of surface species on gas transport. Langmuir. 2000;16(19):7435.

    Article  Google Scholar 

  8. Aarik J, Karlis J, Mändar H, Uustare T, Sammelselg V. Influence of structure development on atomic layer deposition of TiO2 thin films. Appl Surf Sci. 2001;181(3–4):339.

    Article  Google Scholar 

  9. Schuisky M, Kukli K, Aarik J, Lu J, Härsta A. Epitaxial growth of TiO2 films in a hydroxyl-free atomic layer deposition process. J Cryst Growth. 2002;235(3–4):293.

    Article  Google Scholar 

  10. Hopfengartner G, Borgmann D, Rademacher I, Wedler G, Hums E, Spitznagel GW. XPS studies of oxidic model catalysts: internal standards and oxidation numbers. J Electron Spectrosc Relat Phenom. 1993;63(2):91.

    Article  Google Scholar 

  11. Sayers CN, Armstrong NR. X-ray photoelectron spectroscopy of TiO2 and other titanate electrodes and various standard titanium oxide materials: surface compositional changes of the TiO2 electrode during photoelectrolysis. Surf Sci. 1978;77(3–4):301.

    Article  Google Scholar 

  12. Zhao F, Cui X, Wang B, Hou JG. Preparation and characterization of C54 TiSi2 nanoislands on Si (1 1 1) by laser deposition of TiO2. Appl Surf Sci. 2006;253(5):2785.

    Article  Google Scholar 

  13. Aarik J, Aidla A, Sammelselg V, Siimon H, Uustare T. Control of thin film structure by reactant pressure in atomic layer deposition of TiO2. J Cryst Growth. 1996;169(3):496.

    Article  Google Scholar 

  14. Ferguson JD, Yoder AR, Weimer AW, George SM. TiO2 atomic layer deposition on ZrO2 particles using alternating exposures of TiCl4 and H2O. Appl Surf Sci. 2004;226(4):393.

    Article  Google Scholar 

  15. Primet M, Pichat P, Mathieu MV. Infrared study of the surface of titanium dioxides. II. Acidic and basic properties. J Phys Chem. 1971;75(9):1216.

    Article  Google Scholar 

  16. Matero RJ, Rahtu A, Ritala M. In situ quadrupole mass spectrometry and quartz crystal microbalance studies on the atomic layer deposition of titanium dioxide from titanium tetrachloride and water. Chem Mater. 2001;13(12):4506.

    Article  Google Scholar 

  17. Nakamura M, Kato S, Aoki T, Sirghi L, Hatanaka Y. Role of terminal OH groups on the electrical and hydrophilic properties of hydro-oxygenated amorphous TiO x :OH thin films. J Appl Phys. 2001;90(7):3391.

    Article  Google Scholar 

  18. Lawless D, Serpone N, MeiselJ D. Role of hydroxyl radicals and trapped holes in photocatalysis. A pulse radiolysis study. Phys Chem. 1991;95(13):5166.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science and Technology Major Project (No. 2009ZX02037-003) and the China Postdoctoral Science Foundation (No. 2011M500996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, ZP., Liu, BW., Li, CB. et al. Dehydroxylation action on surface of TiO2 films restrained by nitrogen carrier gas during atomic layer deposition process. Rare Met. 33, 583–586 (2014). https://doi.org/10.1007/s12598-013-0206-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0206-y

Keywords

Navigation