Skip to main content
Log in

Thermomechanical coupling simulation and experimental study in the isothermal ECAP processing of Ti-6Al-4V alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The thermomechanical coupling simulation of the isothermal equal channel angular pressing (ECAP) of Ti-6Al-4V alloy was conducted. The effect of processing parameters, ECAP pass number and the residual billet on the effective strain, stress and temperature distribution was investigated. Based on the coupling simulation results, it is found that the shear factor, ram speed, deformation temperature, channel intersection angle and residual billet significantly affect the ECAP deformation behaviors. Meanwhile, the experimental study of the isothermal ECAP process of Ti-6Al-4V alloy using route C, in which the repeated rotation angle around the longitudinal billet axis before reinsertion in the die was 180°, were conducted at a deformation temperature of 750°C, a ram speed of 0.3 mm·s−1, an outer arc of curvature of 60° and a channel intersection angle of 120°. Furthermore, a large amount of recrystallization occurs and some prior α phase grains grow in the post-ECAP process of Ti-6Al-4V alloy. The yield strength of post-ECAP Ti-6Al-4V alloy increases compared with that of as-received Ti-6Al-4V alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valiev R.Z. and Langdon T.G., Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 2006, 51(7): 881.

    Article  CAS  Google Scholar 

  2. Valiev R.Z., Kozlov E.V., Ivanov Y.F., Lian J., Nazarov A.A., and Baudelet B., Deformation behavior of ultra-fine-grained copper, Acta Mater., 1994, 42(7): 2467.

    Article  CAS  Google Scholar 

  3. Valiev R.Z., Salimonenko D.A., Tsenev N.K., Berbon P.B., and Langdon T.G., Observation of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes, Scripta Mater., 1997, 37(12): 1945.

    Article  CAS  Google Scholar 

  4. Langdon T.G., Superplasticity in ultrafine-grained materials, Key Eng. Mater., 1994, 97(9): 109.

    Article  Google Scholar 

  5. Valiev R.Z., Islamgaliev R.K., and Alexandrov I.V., Bulk nanostrucrured materials from severe plastic deformation, Prog. Mater. Sci., 2000, 45(2): 103.

    Article  CAS  Google Scholar 

  6. Zhernakov V.S., Latysh V.V., and Zharikov A.I., The developing of nanostructured SPD Ti for structural use, Scripta Mater., 2001, 44(8): 1771.

    Article  CAS  Google Scholar 

  7. Langdon T.G., Recent developments in high strain rate superplasticity, Mater. Trans. JIM, 1999, 40(8): 716.

    CAS  Google Scholar 

  8. Tabachnikova E.D., Bengus V.Z., Stolyarov V.V., Raab G.I., Valiev R.Z., Csach K., and Miskuf J., The contribution of grain boundary dislocation to the plastic deformation of nanostructured titanium from the SD-effect of the yield stress, Mater. Sci. Eng. A, 2001, 309/310: 524.

    Article  Google Scholar 

  9. Smolyakov A.A., Solovyev V.P., Korshunov A.I., and Enikeev N.A., Three-dimensional numerical simulations of multi-pass equal-channel angular pressing by a variation difference method and comparison with experiment, Mater. Sci. Eng. A, 2008, 493(1/2): 148.

    Google Scholar 

  10. Korshunov A., Kravchenko T., Polyakov L., Smolyakov A.A., Vedernikova I., and Morozov A., Effects of the number of equal-channel angular pressing passes on the anisotropy of ultra-fine titanium, Mater. Sci. Eng. A, 2008, 493(1/2): 160.

    Google Scholar 

  11. Zhao X.C., Fu W.J., Yang X.R., and Langdon T.G., Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature, Scripta Mater., 2008, 59(5): 542.

    Article  CAS  Google Scholar 

  12. Huang C., Murthy T.G., Shankar M.R., M’saoubi R., and Chandrasekar S., Temperature rise in severe plastic deformation of titanium at small strain-rates, Scripta Mater., 2008, 58(8): 663.

    Article  CAS  Google Scholar 

  13. Zeipper L.F., Zehetbauer M.J., and Holzleithner Ch., Defect based micromechanical modelling and simulation of nanoSPD CP-Ti in post-deformation, Mater. Sci. Eng. A, 2005, 410/411(25): 217.

    Google Scholar 

  14. Raab G.I., Soshnikova E.P., and Valiev R.Z., Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial pure Ti, Mater. Sci. Eng. A, 2004, 387/389: 674.

    Article  Google Scholar 

  15. Semenova I.P., Raab G.I., Saitova L.R., and Valiev R.Z., The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti-6Al-4V alloy, Mater. Sci. Eng. A, 2004, 387/389: 805.

    Article  Google Scholar 

  16. Pei Q.X., Hu B.H., Lu C., and Wang Y.Y., A finite element study of the temperature rise during equal channel angular pressing, Scripta Mater., 2003, 49(4): 303.

    Article  CAS  Google Scholar 

  17. Luo J., Li M.Q., Li H., and Yu W.X., Effect of the strain on the deformation behaviour of isothermally compressed Ti-6Al-4V alloy, Mater. Sci. Eng. A, 2008, 505(1/2): 88.

    Google Scholar 

  18. Oh S.J. and Kang S.B., Analysis of the billet deformation during equal channel angular pressing, Mater. Sci. Eng. A, 2003, 343(1/2): 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoquan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Zhang, C., Luo, J. et al. Thermomechanical coupling simulation and experimental study in the isothermal ECAP processing of Ti-6Al-4V alloy. Rare Metals 29, 613–620 (2010). https://doi.org/10.1007/s12598-010-0180-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-010-0180-6

Keywords

Navigation