Skip to main content
Log in

Impact of CdTe BSF layer on enhancing the efficiency of MoSe2 solar cell

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Molybdenum Diselenide (MoSe2)-based solar cells have gained significant interest among researchers due to their exceptional semiconducting properties. However, the performance is bottle-necked by band structure mismatches in the back surface field (BSF)/MoSe2 and MoSe2/buffer interfaces. This study aims to enhance the performance of a novel Cu/FTO/CdS/MoSe2/CdTe/Au solar cell and explore the effects of the Cadmium Telluride (CdTe) BSF and CdS buffer layer on key performance parameters such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE). Utilizing SCAPS simulation software, we conducted a comprehensive analysis considering variations in layer thickness, carrier concentration, bulk defect concentration, interface defects, operating temperature, and electrode configuration. Our findings reveal that the device shows good performance at lower carrier concentrations (1 × 1016 cm−3) with a thin (2 μm) MoSe2 absorber layer. For the Cu/FTO/CdS/MoSe2/Au reference cell, we estimated a PCE of 21.19%, Voc of 0.605 V, Jsc of 42.82 mA/cm2, and FF of 81.67%. In contrast, by introducing CdTe between the MoSe2 absorber and the rear Au electrode in the Cu/FTO/CdS/MoSe2/CdTe/Au configuration, we achieved significantly improved performance, with a PCE of 27.05%, Voc of 0.747 V, Jsc of 43.57 mA/cm2, and FF of 83.09%. This research offers valuable insights and presents a viable pathway towards realizing cost-effective MoSe2-based thin-film solar cells with enhanced performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data will be available upon reasonable request.

Abbreviations

χ:

Electron affinity

BSF:

Back surface field

CB:

Conduction band

CBO:

Conduction Band Offset

CE:

Counter Electrode

CdTe:

Cadmium Telluride

c-Si:

Crystalline silicon

Eg:

Energy band gap

EQE:

External Quantum Efficiency

ETL:

Electron transport layer

FF:

Fill factor

HTL:

Hole transport layer

Jsc :

Short circuit current density

J-V:

Current density—voltage

MoSe2:

Molybdenum Diselenide

NA :

Shallow uniform acceptor density

PCE:

Power conversion efficiency

PV:

Photovoltaic

QE:

Quantum efficiency

Rs :

Series resistance

Rsh :

Shunt resistance

SC:

Solar cell

TFSCs:

Thin-film solar cells

TMDC:

Transition metal dichalcogenides

UV:

Ultraviolet

VB:

Valence band

VBO:

Valence band offset

Voc :

Open voltage current

εr :

Dielectric permittivity (relative)

ND :

Shallow uniform donor density

Nt :

Bulk Defect density

nt :

Interface defect density

References

  1. W. Choi et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017)

    Article  Google Scholar 

  2. M.A. Green et al., Solar cell efficiency tables (version 62). Prog. Photovoltaics Res. Appl. 31, 651–663 (2023)

    Article  Google Scholar 

  3. S.R.I. Biplab et al., Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J. Comput. Electron. (2019). https://doi.org/10.1007/s10825-019-01433-0

    Article  Google Scholar 

  4. M.S. Reza et al., Improving the efficiency of a new perovskite solar cell based on Sr3SbI3 by optimizing the hole transport layer. Energy Fuels (2023). https://doi.org/10.1021/acs.energyfuels.3c04099

    Article  Google Scholar 

  5. E. Oublal, M. Al-Hattab, A. AitAbdelkadir, M. Sahal, New numerical model for a 2T-tandem solar cell device with narrow band gap SWCNTs reaching efficiency around 35%. Solar Energy 246, 57–65 (2022)

    Article  ADS  Google Scholar 

  6. M. Al-Hattab et al., Simulation study of the novel Ag2MgSn(S/Se)4 chalcogenide tandem solar device employing monolithically integrated (2T) configurations. Solar Energy 248, 221–229 (2022)

    Article  ADS  Google Scholar 

  7. M. Al-Hattab et al., Novel simulation and efficiency enhancement of eco-friendly Cu2FeSnS4/c-silicon tandem solar device. Silicon 15, 7311–7319 (2023)

    Article  Google Scholar 

  8. M. Al-Hattab et al., Ab initio investigation for solar technology on the optical and electronic properties of double perovskites Cs 2 AgBiX 6 (X=Cl, Br, I). ECS J. Solid State Sci. Technol. 12, 094004 (2023)

    Article  ADS  Google Scholar 

  9. Y. Chrafih et al., Performance assessment of an eco-friendly tandem solar cell based on double perovskite Cs2AgBiBr 6. J. Phys. Chem. Solids 187, 111815 (2024)

    Article  Google Scholar 

  10. J. Guerroum et al., Ag2BeSnX4(S, Se, Te)-based kesterite solar cell modeling: a investigation and analysis. Sol. Energy 266, 112194 (2023)

    Article  ADS  Google Scholar 

  11. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017). https://doi.org/10.1038/natrevmats.2017.33

  12. M.Z. Iqbal, S. Alam, M.M. Faisal, S. Khan, Recent advancement in the performance of solar cells by incorporating transition metal dichalcogenides as counter electrode and photoabsorber. Int. J. Energy Res. 43, 3058–3079 (2019)

    Article  Google Scholar 

  13. B. Zaidi, C. Shekhar, B. Hadjoudja, S. Gagui, B. Chouial, Optimization of highly efficient monolayer MoSe2 based solar cells. Acta Phys. Pol., A 136, 495–497 (2019)

    Article  ADS  Google Scholar 

  14. P. Tyagi, S. Choudhary, Modulating the optical and electrical properties of MoSe2 (Molybdenum diselenide) and WS2 (Tungsten disulfide) monolayer by the adsorption of halogen (F, Cl, Br, I and At) atoms. Opt. Quant. Electron. 54, 869 (2022)

    Article  Google Scholar 

  15. B.K. Choi et al., Temperature dependence of band gap in MoSe2 grown by molecular beam epitaxy. Nanoscale Res. Lett. 12, 492 (2017)

    Article  ADS  Google Scholar 

  16. X. Su et al., Bandgap engineering of MoS 2 /MX 2 (MX 2 = WS 2, MoSe 2 and WSe 2) heterobilayers subjected to biaxial strain and normal compressive strain. RSC Adv. 6, 18319–18325 (2016)

    Article  ADS  Google Scholar 

  17. Z. Chen et al., Wafer-size and single-crystal MoSe 2 atomically thin films grown on GaN substrate for light emission and harvesting. ACS Appl. Mater. Interfaces. 8, 20267–20273 (2016)

    Article  Google Scholar 

  18. A. Jäger-Waldau, M. Lux-Steiner, E. Bucher, Thin films of MoSe2 and WSe2 prepared by soft selenization as bulk material for solar cells. In Tenth E.C. Photovoltaic Solar Energy Conference 597–600 (Springer Netherlands, 1991). https://doi.org/10.1007/978-94-011-3622-8_153

  19. A.T. Abir, A. Joy, B.K. Mondal, J. Hossain, Numerical prediction on the photovoltaic performance of CZTS-based thin film solar cell. Nano Select 4, 112–122 (2023)

    Article  Google Scholar 

  20. P.D. Sarkar, A. Paul, K.K. Ghosh, Thin film dichalcogenide MoSe2 solar cell with optimized design parameters. IOSR J. Electron. Commun. Eng. 12, 13–17 (2017)

    Article  Google Scholar 

  21. B. Sultana et al., Numerical study of MoSe 2 -based dual-heterojunction with In 2 Te 3 BSF layer toward high-efficiency photovoltaics. Phys. Scr. 98, 095935 (2023)

    Article  ADS  Google Scholar 

  22. B. Zaidi et al., Simulation study of monolithic MoSe2/CIGS tandem solar cells. Discov. Mater. 1, 1–5 (2021)

    Article  MathSciNet  Google Scholar 

  23. V. Manjunath, S. Bimli, P.A. Shaikh, S.B. Ogale, R.S. Devan, Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells. J. Mater. Chem. C 62, 15725–15780 (2022)

    Article  Google Scholar 

  24. Mamta, K.K. Maurya, V.N. Singh, Enhancing the performance of an Sb2Se3-based solar cell by dual buffer layer. Sustainability 13, 12320 (2021)

    Article  Google Scholar 

  25. M.F. Rahman et al., A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells. Appl. Phys. A Mater. Sci. Process. 126, 1–11 (2020)

    Article  Google Scholar 

  26. S. Souri, M. Marandi, Numerical modelling of the effect of the Ag: ZnSe BSF layer on the high performance of ZnSe/CdTe thin film solar cells by SCAPS-1D software. Opt. Quant. Electron. 55, 397 (2023)

    Article  Google Scholar 

  27. T. Nusrat, T. HasnatFerdous, F. Tuz Zohra, Y. Arafat, Introducing various BSF materials and different doping concentrations in dual junction solar cell with a view to achieving optimal efficiency. In 2018 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) 110–113 (IEEE, 2018). https://doi.org/10.1109/WIECON-ECE.2018.8783095

  28. H.T. Ganem, A. N. S., The effect of band offsets of absorption layer on CNTS / ZnS / ZnO solar cell by SCAPS-1D. Tikrit J. Pure Sci. 28, 82–88 (2023)

    Google Scholar 

  29. Y. Özen, The enhancement in cell performance of CdTe-based solar cell with Si/SiO2 distributed Bragg reflectors. Appl. Phys. A 126, 632 (2020)

    Article  ADS  Google Scholar 

  30. M.F. Rahman et al., A novel CdTe ink-assisted direct synthesis of CdTe thin films for the solution-processed CdTe solar cells. J. Mater. Sci. 55, 7715–7730 (2020)

    Article  ADS  Google Scholar 

  31. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    Article  ADS  Google Scholar 

  32. N. Shrivastav et al., Optimizing the performance of Cs2AgBiBr 6 based solar cell through modification of electron and hole transport layers. Mater. Today Commun. 36, 106761 (2023)

    Article  Google Scholar 

  33. M.F. Rahman, M.H. Rahman, A. Kuddus, A.R. Chaudhry, A. Irfan, Unveiling the structural, electronic, optical, mechanical, and photovoltaic properties of lead-free inorganic New Ba 3 MBr 3 (M = As, N, P, and Sb) Perovskites. Energy Fuels (2024). https://doi.org/10.1021/acs.energyfuels.4c00084

    Article  Google Scholar 

  34. M.K. Hossain et al., Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs 2 BiAgI 6 -based perovskite solar cells with different charge transport layers. RSC Adv. 12, 34850–34873 (2022)

    Article  ADS  Google Scholar 

  35. J. Al Mahmud, et al., Design and analysis of SnS 2/WS 2/V2O5 double-heterojunction toward high performance photovoltaics. Energy Adv. 19–21 (2023) https://doi.org/10.1039/d3ya00231d

  36. M. Al-Hattab, et al., Numerical simulation of CdS/GaSe solar cell using SCAPs simulation software. In 315–325 (2023). https://doi.org/10.1007/978-3-031-12416-7_27

  37. A. Kowsar, et al., Comparative study on solar cell simulators. In 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET) 1–6 (IEEE, 2019). https://doi.org/10.1109/ICIET48527.2019.9290675

  38. R. Wang, L. Xie, T. Wu, C. Ge, Y. Hua, Constructing spike-like energy band alignment at the heterointerface in highly efficient perovskite solar cells. Chem. Sci. 14, 2877–2886 (2023)

    Article  Google Scholar 

  39. M.F. Rahman et al., Concurrent investigation of antimony chalcogenide (Sb2Se3 and Sb2S3)-based solar cells with a potential WS2 electron transport layer. Heliyon 8, e12034 (2022)

    Article  Google Scholar 

  40. M.M.A. Moon et al., Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Phys. Scr. 95, 035506 (2020)

    Article  ADS  Google Scholar 

  41. G.F.I. Toki et al., Optimizing lead-free Cs3Bi2I9 perovskite solar cells: exploring absorber and charge transport layers parameters for improved efficiency. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01648-2

    Article  Google Scholar 

  42. N. Chawki et al., Efficacy analysis of BaZrS3-based perovskite solar cells: investigated through a numerical simulation. Adv. Mater. Process. Technol. 00, 1–14 (2024)

    Google Scholar 

  43. M.H. Ali et al., Performance enhancement of an MoS 2 -based heterojunction solar cell with an In 2 Te 3 back surface field: a numerical simulation approach. ACS Omega 8, 7017–7029 (2023)

    Article  MathSciNet  Google Scholar 

  44. M.D. Haque, M.H. Ali, M.F. Rahman, A.Z.M.T. Islam, Numerical analysis for the efficiency enhancement of MoS2 solar cell: a simulation approach by SCAP-1D. Opt. Mater. 131, 112678 (2022)

    Article  Google Scholar 

  45. M. Al-Hattab et al., Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Sol. Energy 227, 13–22 (2021)

    Article  ADS  Google Scholar 

  46. M. Aliaghayee, Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D. J. Electron. Mater. 52, 2475–2491 (2023)

    Article  ADS  Google Scholar 

  47. H.H. AbdelAziz, Performance evaluation of free hole-transport layer CsPbI3 perovskite solar cells. J. Mater. Sci. Mater. Electron. 34, 0–11 (2023)

    Article  Google Scholar 

  48. T. Du et al., Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombinationversusextraction. J. Mater. Chem. C 8, 12648–12655 (2020)

    Article  Google Scholar 

  49. R.K. Zahoo, A.N. Saleh, Effect of carrier concentration and thickness of absorber layer on performance CBTS solar cell. Turk. J. Comput. Math. Educ. 12, 5056–5064 (2021)

    Google Scholar 

  50. S. Gautam, A.K. Patel, R. Mishra, O. Mishra, Performance analysis of WSe2 solar cell with Cu2O hole transport layer by optimization of electrical and optical properties. J. Comput. Electron. 21, 1373–1385 (2022)

    Article  Google Scholar 

  51. J. Mahmud, F. Al Rahman, D. Haque, A. Benami, Design and optimization of WS2 based high performance double absorber solar cell. Phys. Scr. 99, 1–15 (2024). https://doi.org/10.1088/1402-4896/ad1d3f

  52. T. Chargui, F. Lmai, M. AL-Hattab, O. Bajjou, K. Rahmani, Experimental and numerical study of the CIGS/CdS heterojunction solar cell. Opt. Mater. 140, 113849 (2023)

    Article  Google Scholar 

  53. R. Kumari, Mamta, A.K. Chaudhary, V.N. Singh, Performance analysis of CdS‐Free, Sb 2 Se 3 /ZnSe p–n junction cells with various hole transport layers and contacts. Adv. Theory Sims. (2023) https://doi.org/10.1002/adts.202300322

  54. M.A. Rahman, Numerical modeling of ultra-thin CuSbS 2 heterojunction solar cell with TiO 2 electron transport and CuAlO 2: Mg BSF layers. Opt. Mater. Express 12, 2954 (2022)

    Article  ADS  Google Scholar 

  55. S. Enayati Maklavani, S. Mohammadnejad, Enhancing the open-circuit voltage and efficiency of CZTS thin-film solar cells via band-offset engineering. Opt. Quant. Electron. 52, 72 (2020)

    Article  Google Scholar 

  56. I. Montoya De Los Santos et al., Towards a CdTe solar cell efficiency promotion: the Role of ZnO: Al and CuSCN nanolayers. Nanomaterials 13, 1335 (2023)

    Article  Google Scholar 

  57. Y. Yang, N. Huo, J. Li, Gate tunable photovoltaic effect in a MoSe2 homojunction enabled with different thicknesses. J. Mater. Chem. C 5, 7051–7056 (2017)

    Article  Google Scholar 

  58. A. Monnaf, A.K.M.M. Haque, H. Ali, S. Bhattarai, D. Haque, Design and simulation of Cu2SnSe3-based solar cells using various hole transport layer (HTL) for performance efficiency above 32%. Phys. Scr. 98,125903 (2023). https://doi.org/10.1088/1402-4896/ad0529

  59. L.M.M. Livingston, R.T. Prabu, R. Radhika, A. Kumar, Simulation of native oxide-passivated CsSn0.5Ge0.5I3 highly stable lead-free inorganic perovskite solar cell. Phys. Status Solidi (A) Appl. Mater. Sci. 2300227, 1–11 (2023)

    Google Scholar 

  60. M. Noman, M. Shahzaib, S.T. Jan, S.N. Shah, A.D. Khan, 26.48% efficient and stable FAPbI3 perovskite solar cells employing SrCu2O2 as hole transport layer. RSC Adv. 13, 1892–1905 (2023)

    Article  ADS  Google Scholar 

  61. R. El Otmani, A. El Manouni, A. Al Maggoussi, Numerical simulation of CZTSe based solar cells using different back surface field layers: improvement and comparison. J. Electron. Mater. 50, 2021–2033 (2021)

    Article  ADS  Google Scholar 

  62. M.M.A. Moon, M.H. Ali, M.F. Rahman, J. Hossain, A.B.M. Ismail, Design and simulation of FeSi‐based novel heterojunction solar cells for harnessing visible and near‐infrared light. Phys. Status Solidi (a) 217, 1900921 (2020). https://doi.org/10.1002/pssa.201900921

  63. Y. Majeed et al., Renewable energy as an alternative source for energy management in agriculture. Energy Rep. 10, 344–359 (2023)

    Article  Google Scholar 

  64. Global Energy Review 2019, Global energy review 2019. (2020) https://doi.org/10.1787/90c8c125-en

  65. M.F. Rahman et al., Design and numerical analysis of CIGS-based solar cell with V 2 O 5 as the BSF layer to enhance photovoltaic performance. AIP Adv. 13, 045309 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. Irfan extends his appreciation to the Deanship of Research and graduate studies at King Khalid University for funding this work through Large Groups Research Project under grant number R.G.P.2/130/45. A. R. Chaudhry is thankful to the Deanship of Graduate Studies and Scientific Research at the University of Bisha, for supporting this work through the Fast-Track Research Support Program.

Author information

Authors and Affiliations

Authors

Contributions

Md. Ferdous Rahman: Conceptualization, Methodology, Software, Validation, Formal analysis, Visualization, Investigation, Data Curation, Supervision, Writing-Original Draft, Review & Editing.

Naimur Rahman, Abu Bakkar, Md. Dulal Haque, Sheikh Rashel Al Ahmed, Md. Hafijur Rahman: Methodology, Software, Validation, Formal analysis, Visualization Investigation, Data Curation, Writing-Original Draft, Review & Editing,

Ahmad Irfan, Aijaz Rasool Chaudhry: Validation, Formal analysis, Writing-Original Draft, Review & Editing.

Corresponding author

Correspondence to Md. Ferdous Rahman.

Ethics declarations

Ethical approval

The all authors declare that the manuscript does not have studies on human subjects, human data or tissue, or animals.

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, N., Bakkar, A., Haque, M.D. et al. Impact of CdTe BSF layer on enhancing the efficiency of MoSe2 solar cell. J Opt (2024). https://doi.org/10.1007/s12596-024-01855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01855-5

Keywords

Navigation