Skip to main content
Log in

Lossy mode resonance surface plasmon resonance sensor for malaria detection

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A lossy mode resonance (LMR) prism-based refractive index (R.I.) sensor theoretical model is presented here. LMR sensor consists of a multilayer configuration of Cytop, perovskite (Cs2AgBiBr6), LiF, and sensing medium. The sensor's characteristics under angular interrogation are significantly enhanced by using the Cytop as the matching layer and Cs2AgBiBr6 as the lossy layer. This paper also summarizes the design concepts for the device and investigates the consequences of modifications in the sensor structure on the reflectance. The device has sensing characteristics under T.E. and T.M. polarized light, and the results demonstrate that its R.I. detection range is between 1.33 and 1.40. This LMR sensor has a maximum quality factor of 2338 RIU−1 under T.M. and 9937 RIU−1 under T.E. polarized light and a sensitivity range of 53–100/RIU under T.M./T.E. polarized light. Malaria has been detected in the human blood. All four stages of malaria have been identified. The parameters have been calculated for the four-stage normal, ring, trophozoite, and schizont of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data available.

Code availability

Not applicable.

References

  1. Y. Zhang et al., Theoretical modeling and investigations of lossy mode resonance prism sensor based on TiO2 film. Opt. Express 30(18), 32483 (2022). https://doi.org/10.1364/oe.466170

    Article  ADS  CAS  PubMed  Google Scholar 

  2. O. Fuentes, I. Del Villar, J.M. Corres, I.R. Matias, Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides. Sci. Rep. 9(1), 1–10 (2019). https://doi.org/10.1038/s41598-019-45285-x

    Article  CAS  Google Scholar 

  3. B. Saparov, D.B. Mitzi, Organic-Inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116(7), 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715

    Article  CAS  PubMed  Google Scholar 

  4. G. Kakavelakis, M. Gedda, A. Panagiotopoulos, E. Kymakis, T.D. Anthopoulos, K. Petridis, Metal halide perovskites for high-energy radiation detection. Adv. Sci. 7(22), 1–33 (2020). https://doi.org/10.1002/advs.202002098

    Article  CAS  Google Scholar 

  5. F. Maddalena et al., Inorganic, organic, and perovskite halides with nanotechnology for high-light yield x- and γ-ray scintillators. Crystals 9(2), 88 (2019). https://doi.org/10.3390/cryst9020088

    Article  CAS  Google Scholar 

  6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London 18(1), 269–275 (1901). https://doi.org/10.1088/1478-7814/18/1/325

    Article  Google Scholar 

  8. R.W. Wood, Gratznqs with controlled groove sbrm and abnormal distribution of lntensity”, London, Edinburgh. Dublin Philos. Mag. J. Sci. 23(134), 310–317 (1912)

    Article  Google Scholar 

  9. H.H. Nguyen, J. Park, S. Kang, M. Kim, Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Switzerland) 15(5), 10481–10510 (2015). https://doi.org/10.3390/s150510481

    Article  ADS  CAS  Google Scholar 

  10. I. Del Villar et al., Optical sensors based on lossy-mode resonances. Sens. Actuators, B Chem. 240, 174–185 (2017). https://doi.org/10.1016/j.snb.2016.08.126

    Article  CAS  Google Scholar 

  11. O. Fuentes, I. Del Villar, I. Dominguez, J.M. Corres, I.R. Matías, Simultaneous generation of surface plasmon and Lossy mode resonances in the same planar platform. Sensors 22(4), 1–11 (2022). https://doi.org/10.3390/s22041505

    Article  CAS  Google Scholar 

  12. V. Semwal, A.M. Shrivastav, R. Verma, B.D. Gupta, Surface plasmon resonance based fiber optic ethanol sensor using layers of silver/silicon/hydrogel entrapped with ADH/NAD. Sens. Actuators, B Chem. 230, 485–492 (2016). https://doi.org/10.1016/j.snb.2016.02.084

    Article  CAS  Google Scholar 

  13. M.F.S. Ferreira et al., Roadmap on optical sensors. J. Opt. 176(5), 139–148 (2018). https://doi.org/10.1088/2040-8986/aa7419

    Article  CAS  Google Scholar 

  14. A.D. Tjandra, J.Y.H. Chang, S. Ladame, R. Chandrawati, Opt. sens. (2019). https://doi.org/10.1016/B978-0-12-813886-1.00003-6

    Article  Google Scholar 

  15. A. Ozcariz, C. Ruiz-Zamarreño, F.J. Arregui, A comprehensive review: materials for the fabrication of optical fiber refractometers based on lossy mode resonance. Sensors (Switzerland) 20(7), 1–23 (2020). https://doi.org/10.3390/s20071972

    Article  CAS  Google Scholar 

  16. I. Vitoria, C.R. Zamarreño, A. Ozcariz, I.R. Matias, Fiber optic gas sensors based on lossy mode resonances and sensing materials used therefor: a comprehensive review. Sensors (Switzerland) 21(3), 1–26 (2021). https://doi.org/10.3390/s21030731

    Article  CAS  Google Scholar 

  17. Vikas, S.K. Mishra, A.K. Mishra, P. Saccomandi, R.K. Verma, Recent advances in lossy mode resonance-based fiber optic sensors: a review. Micromachines 13(11), 1921 (2022). https://doi.org/10.3390/mi13111921

    Article  PubMed  PubMed Central  Google Scholar 

  18. A. Urrutia, J. Goicoechea, F.J. Arregui, “Optical fiber sensors based on nanoparticle-embedded coatings. J. Sens. (2015). https://doi.org/10.1155/2015/805053

    Article  Google Scholar 

  19. A.K. Mishra, S.K. Mishra, B.D. Gupta, SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun. 344, 86 (2015)

    Article  ADS  CAS  Google Scholar 

  20. F. Sohrabi, S.M. Hamidi, Neuroplasmonics: from Kretschmann configuration to plasmonic crystals. Eur. Phys. J. Plus 131(7), 1–15 (2016). https://doi.org/10.1140/epjp/i2016-16221-5

    Article  CAS  Google Scholar 

  21. L. Wu, Y. Xiang, Y. Qin, Lossy-mode-resonance sensor based on perovskite nanomaterial with high sensitivity. Opt. Express 29(11), 17602 (2021). https://doi.org/10.1364/oe.426409

    Article  ADS  CAS  PubMed  Google Scholar 

  22. D. Kaur, V.K. Sharma, A. Kapoor, High sensitivity lossy mode resonance sensors. Sens. Actuators, B Chem. 198, 366–376 (2014). https://doi.org/10.1016/j.snb.2014.03.058

    Article  CAS  Google Scholar 

  23. M. Heidari et al., A high-performance TE modulator/TM-pass polarizer using selective mode shaping in a VO2-based side-polished fiber. Nanophotonics 10(13), 3451–3463 (2021). https://doi.org/10.1515/nanoph-2021-0225

    Article  CAS  Google Scholar 

  24. M. Kumar, A. Kumar, R. Saini, M.K. Khanna, G. Bhatt, A. Kapoor, Effect of high index buffer layer in PbSe clad waveguide to design a visible range polarizer. Optik 228, 166001 (2021). https://doi.org/10.1016/j.ijleo.2020.166001

    Article  ADS  CAS  Google Scholar 

  25. B. Karki, K.C. Ramya, R.S.S. Devi, V. Srivastava, A. Pal, Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Opt. Quant. Electron. 54(7), 451 (2022). https://doi.org/10.1007/s11082-022-03875-6

    Article  CAS  Google Scholar 

  26. B. Karki, A. Uniyal, T. Sharma, A. Pal, V. Srivastava, Indium phosphide and black phosphorus employed surface plasmon resonance sensor for formalin detection: numerical analysis. Opt. Eng. 61(1), 17101 (2022)

    Article  CAS  Google Scholar 

  27. B. Karki, A. Jha, A. Pal, V. Srivastava, Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt. Quant. Electron. 54(9), 1–13 (2022). https://doi.org/10.1007/s11082-022-04004-z

    Article  CAS  Google Scholar 

  28. A.O. AlGhaithi, S.A. Aravindh, M.N. Hedhili, T.K. Ng, B.S. Ooi, A. Najar, Optical properties and first-principles study of CH3NH3PbBr3Perovskite structures. ACS Omega 5(21), 12313–12319 (2020). https://doi.org/10.1021/acsomega.0c01044

    Article  CAS  Google Scholar 

  29. L.K. Ono, E.J. Juarez-Perez, Y. Qi, Progress on perovskite materials and solar cells with mixed cations and halide anions. ACS Appl. Mater. Interfaces 9(36), 30197–30246 (2017). https://doi.org/10.1021/acsami.7b06001

    Article  CAS  PubMed  Google Scholar 

  30. S. Brittman, E.C. Garnett, Measuring n and k at the microscale in single crystals of CH3NH3PbBr3 Perovskite. J. Phys. Chem. C 120(1), 616–620 (2016). https://doi.org/10.1021/acs.jpcc.5b11075

    Article  CAS  Google Scholar 

  31. B. Karki, A. Uniyal, G. Srivastava, A. Pal, Black phosphorous and cytop nanofilm-based long-range SPR sensor with enhanced quality factor. J. Sens. (2023). https://doi.org/10.1155/2023/2102915

    Article  Google Scholar 

  32. W. Huang et al., Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chem. Sci. 5, 416–426 (2014). https://doi.org/10.1039/c3sc52638k

    Article  ADS  CAS  Google Scholar 

  33. P. Laporte, J.L. Subtil, Refractive index of LiF from 105 to 200 nm. J. Opt. Soc. Am. 72(11), 1558–1559 (1982). https://doi.org/10.1364/JOSA.72.001558

    Article  ADS  CAS  Google Scholar 

  34. G. Young, X. Liu, C. Leng, J. Yang, H. Huang, “Refractive index of [100] lithium fluoride under shock pressures up to 151 GPa.” AIP Adv. (2018). https://doi.org/10.1063/1.5065543

    Article  Google Scholar 

  35. A. Uniyal, B. Chauhan, A. Pal, V. Srivastava, InP and graphene employed surface plasmon resonance sensor for measurement of sucrose concentration: a numerical approach. Opt. Eng. 61(5), 057103 (2022). https://doi.org/10.1117/1.OE.61.5.057103

    Article  ADS  CAS  Google Scholar 

  36. A. Uniyal, A. Pal, B. Chauhan, Long-range spr sensor employing platinum diselenide and cytop nanolayers giving improved performance. Phys. B Condens. Matter 649, 414487 (2022). https://doi.org/10.2139/ssrn.4230023

    Article  Google Scholar 

  37. A.H.M. Almawgani et al., Titanium disilicide, black phosphorus-based surface plasmon resonance sensor for dengue detection. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01856-3

    Article  PubMed  PubMed Central  Google Scholar 

  38. G. Ansari, A. Pal, A.K. Srivastava, G. Verma, Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor. Opt. Laser Technol. 164(2), 111 (2023). https://doi.org/10.1016/0030-3992(80)90045-6

    Article  Google Scholar 

  39. S.A. Taya et al., Highly sensitive sensor based on SPR nanostructure employing graphene and perovskite layers for the determination of blood hemoglobin concentration. Optik 281, 170857 (2023). https://doi.org/10.1016/j.ijleo.2023.170857

    Article  ADS  CAS  Google Scholar 

  40. B. Karki, A. Uniyal, A. Pal, V. Srivastava, Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int. J. Opt. 2022, 1476254 (2022). https://doi.org/10.1155/2022/1476254

    Article  CAS  Google Scholar 

  41. A. Uniyal, B. Chauhan, A. Pal, Y. Singh, Surface plasmon biosensor based on Bi2Te3 antimonene heterostructure for the detection of cancer cells. Appl. Opt. 61(13), 3711–3719 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. B. Karki, B. Vasudevan, A. Uniyal, A. Pal, V. Srivastava, Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 270, 169947 (2022). https://doi.org/10.1016/j.ijleo.2022.169947

    Article  ADS  CAS  Google Scholar 

  43. B. Karki, A. Uniyal, B. Chauhan, A. Pal, Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J. Comput. Electron. 21(2), 445–452 (2022). https://doi.org/10.1007/s10825-022-01854-4

    Article  CAS  Google Scholar 

  44. A. Uniyal, G. Srivastava, A. Pal, S. Taya, A. Muduli, Recent advances in optical biosensors for sensing applications: a review. Plasmonics 18(2), 735–750 (2023). https://doi.org/10.1007/s11468-023-01803-2

    Article  CAS  Google Scholar 

  45. B. Karki, Y. Trabelsi, A. Uniyal, A. Pal, Zinc sulfide, silicon dioxide, and black phosphorus based ultra-sensitive surface plasmon biosensor. Opt. Quantum Electron. (2022). https://doi.org/10.1007/s11082-021-03480-z

    Article  Google Scholar 

  46. A. Pal, A. Jha, A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik 231, 166378 (2021). https://doi.org/10.1016/j.ijleo.2021.166378

    Article  ADS  CAS  Google Scholar 

  47. A. Uniyal, G. Srivastava, P. Sarkar, M. Kumar, S. Singh, S.A. Taya, A. Muduli, A. Pal, Fluorinated graphene and CNT-based surface plasmon resonance sensor for detecting the viral particles of SARS-CoV-2. Phys. B Condens. Matter 669, 415282 (2023). https://doi.org/10.1016/j.physb.2023.415282

    Article  CAS  Google Scholar 

  48. Y. Zhao et al., High figure of merit Lossy mode resonance sensor with graphene. Plasmonics 14(4), 929–934 (2019). https://doi.org/10.1007/s11468-018-0876-2

    Article  CAS  Google Scholar 

  49. C. Qiu, S. Gan, Y. Xiang, X. Dai, High figure of merit in Lossy Mode resonance sensors with PtSe2 thin film. Plasmonics 16(3), 729–735 (2021). https://doi.org/10.1007/s11468-020-01337-x

    Article  CAS  Google Scholar 

  50. L. Wu, J. Zhu, S. Gan, Q. Ma, X. Dai, Y. Xiang, application of few-layer transition metal dichalcogenides to detect the refractive index variation in Lossy-mode resonance sensors with high figure of merit. IEEE Sens. J. 19(13), 5030–5034 (2019). https://doi.org/10.1109/JSEN.2019.2904199

    Article  ADS  CAS  Google Scholar 

  51. L. Wu et al., High-performance Lossy-mode resonance sensor based on few-layer black phosphorus. J. Phys. Chem. C 122(13), 7368–7373 (2018). https://doi.org/10.1021/acs.jpcc.7b12549

    Article  CAS  Google Scholar 

  52. R. Saini et al., Lossy mode resonance-based refractive index sensor for sucrose concentration measurement. IEEE Sens. J. 20(3), 1217–1222 (2020). https://doi.org/10.1109/JSEN.2019.2946760

    Article  ADS  CAS  Google Scholar 

Download references

Funding

No funding available.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally to this paper.

Corresponding author

Correspondence to Bhupinder Singh.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

Not applicable. The work presented in this manuscript is mathematical modeling only for the proposed biosensor. No experiment was performed on the human body and living organism/animal. So, ethical approval from an ethical committee is not required.

Consent to participate

I am willing to participate in the work presented in this manuscript.

Consent for publication

The author has given their consent to publish this work.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Dixit, A. & Dua, P. Lossy mode resonance surface plasmon resonance sensor for malaria detection. J Opt (2024). https://doi.org/10.1007/s12596-023-01646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01646-4

Keywords

Navigation