Skip to main content
Log in

Photoactivation of Ag ions for improved WO3-based optoelectronic devices

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this research, the performance of two different photodetectors, Al/WO3/p-Si and Al/Ag@WO3/p-Si, was compared. The monoclinic structure was evaluated using X-ray diffraction. A surface morphology using FE-SEM, utilizing an atomic force microscope to analyze the surface topography in terms of RMS and average roughness, and the X-ray spectra showed the existence of the elements W, Ag, and O. During a 35-s immersion, the produced films had the greatest absorbance and lowest energy gap. The thickness of the deposited nanofilms was as follows: 125 nm for the pure WO3, 160 nm at 5 s, 420 nm at 15 s, 165 nm at 25 s, 70 nm at 35 s, and 225 nm at 45 s. The ideality factor, barrier height, and conductivity values for Ag@WO3/p-Si were (0.86, 3.07), and the greatest conductivity, respectively, was found at the immersion period of 35 s, according to the study of DC I-V. The build-in potential and depletion area width of Ag@WO3/p-Si devices were (0.7, 12.2 × 105 cm), and the responsivity and detectivity at a wavelength of (425) nm of Al/Ag@WO3/p-Si were (0.31 A W-1) and (1.3281010 Jones), respectively, according to the C-V observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors, “M. A. Fakhri, E. T. Salim,” on reasonable request.

References

  1. Y. Kim, S.H. Lee, S. Jeong, B.J. Kim, J.Y. Choi, H.K. Yu, Conversion of WO3 thin films into self-crosslinked nanorods for large-scale ultraviolet detection. RSC Adv. 10(24), 14147–14153 (2020). https://doi.org/10.1039/d0ra00795a

    Article  ADS  Google Scholar 

  2. E.T. Salim, A.I. Hassan, S.A. Naaes, Effect of gate dielectric thicknesses on MOS photodiode performance and electrical properties. Mater. Res. Express 6(8), 086416 (2019)

    Article  ADS  Google Scholar 

  3. R. Lu, X. Zhong, S. Shang, S. Wang, M. Tang, Effects of sintering temperature on sensing properties of WO3 and Ag-WO3 electrode for NO2 sensor. R. Soc. Open Sci. 5(10), 171691 (2018). https://doi.org/10.1098/rsos.171691

    Article  Google Scholar 

  4. F.A. Mohamed, E.T. Salim, A.I. Hassan, Monoclinic tungsten trioxide (WO3) thin films using spraying pyrolysis: electrical, structural and stoichiometric ratio at different molarity. Dig. J. Nanomater. Biostruct. 17(3), 1029–1043 (2022)

    Article  Google Scholar 

  5. D. Shao, M. Yu, J. Lian, S. Sawyer, Optoelectronic properties of three dimensional WO 3 nanoshale and its application for UV sensing. Opt. Mater. 36(5), 1002–1005 (2014). https://doi.org/10.1016/j.optmat.2014.01.010

    Article  ADS  Google Scholar 

  6. F.A. Mohamed, A.I. Hassan, E.T. Salim, Meso-porous-like tungsten oxide structure: a study on some physical properties at different deposited temperatures. Int. J. Nanoelectron Mater 15(4), 281–292 (2022)

    Google Scholar 

  7. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, Ultra-high photoresponse with superiorly sensitive metal-insulator- semiconductor (MIS) structured diodes for UV photodetector application. Appl. Surf. Sci. 480, 308–322 (2019). https://doi.org/10.1016/j.apsusc.2019.02.214

    Article  ADS  Google Scholar 

  8. S.M. Taleb, M.A. Fakhri, S.A. Adnan, Optical investigations of nanophotonic LiNbO3 films deposited by pulsed laser deposition method. Defect Diffus. Forum 398, 16–22 (2020)

    Article  Google Scholar 

  9. H. Simchi, B.E. Mccandless, T. Meng, W.N. Shafarman, Structural, optical, and surface properties of WO 3 thin films for solar cells. J. Alloys Compd. 617, 609–615 (2014). https://doi.org/10.1016/j.jallcom.2014.08.047

    Article  Google Scholar 

  10. F.G. Khalid, A.S. Ibraheam, M.A. Fakhri, N.H. Numan, Some of the electrical and thermoelectrical properties for Cdo thin films preperaerd using pulsed laser deposition method. AIP Conf. Proc. 2213(1), 020204 (2019)

    Google Scholar 

  11. J. Liu, G. Zhang, K. Guo, D. Guo, M. Shi, Effect of the ammonium tungsten precursor solution with the modification of glycerol on wide band gap WO 3 thin film and its electrochromic properties. Micromachines 11(3), 1–13 (2020)

    Article  Google Scholar 

  12. M.S. Muhsin, J.A. Saimon, E.T. Salim, Incorporation of metal nanoparticle to enhance tungsten oxide (WO3) films properties a mini review. Int. J. Nanoelectron. Mater. 15(Special Issue), 111–118 (2022)

    Google Scholar 

  13. I. Dundar, A. Mere, V. Mikli, M. Krunks, Thickness Effect on photocatalytic activity of TiO 2 thin films fabricated by ultrasonic spray pyrolysis. Catalysts 10(9), 1058 (2020). https://doi.org/10.3390/catal10091058

    Article  Google Scholar 

  14. M.A. Fakhri, R.A. Ismail, A.K. Abass, L.Z. Mohammed, F.H. Alsultany, U. Hashim, Synthesis of LiNbO3/SiO2/Si nanostructures layer by layer based on Mach-Zehnder modulator using pulsed laser deposition route. SILICON 14, 11781–11795 (2022)

    Article  Google Scholar 

  15. C.C. Mardare, A.W. Hassel, Review on the versatility of tungsten oxide coatings. Phys. Status Solidi Appl. Mater. Sci. 216, 1–16 (2019). https://doi.org/10.1002/pssa.201900047

    Article  Google Scholar 

  16. E.T. Salim, A.I. Hassan, F.A. Mohamed, M.H.A. Wahid, M.A. Fakhri, A sight of view on electrical impacts, structural properties and surface roughness of tungsten trioxide thin film: effect of substrate temperatures in WO3/Si device fabrication. Phys. Scr. 98(3), 035508 (2023)

    Article  ADS  Google Scholar 

  17. M. A. Imam and N. Chopra, Morphological , Structural and Optical Characterization of Bottom-Up Growth of Ag-WO3 Core-Shell Nano-Cube Heterostructures, Preprints, 2017, 1–11 (2017), https://doi.org/10.20944/preprints201702.0013.v1.

  18. F. Hattab, M. Fakhry, Optical and structure properties for nano titanium oxide thin film prepared by PLD, In: 2012 First National Conference for Engineering Sciences (FNCES 2012) (2012). DOI: https://doi.org/10.1109/NCES.2012. 6740474.

  19. L. Xu, M. Yin, S.F. Liu, Ag x @ WO 3 core-shell nanostructure for LSP enhanced chemical sensors. Sci. Rep. 4, 6745 (2014). https://doi.org/10.1038/srep06745

    Article  Google Scholar 

  20. E.T. Salim, R.A. Ismail, H.T. Halbos, Deposition geometry effect on structural, morphological and optical properties of Nb2O5 nanostructure prepared by hydrothermal technique. Appl. Phys. A 126, 891 (2020)

    Article  ADS  Google Scholar 

  21. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis. Opt. Quant. Electron. 52(10), 463 (2020)

    Article  Google Scholar 

  22. Z.T. Salim, U. Hashim, M.KMd. Arshad, M.A. Fakhri, E.T. Salim, Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications. Mater. Res. Bull. 86, 215–219 (2017). https://doi.org/10.1016/j.materresbull.2016.11.015

    Article  Google Scholar 

  23. A. Arteaga-dur, R.J. Saenz-hern, HRTEM microstructural characterization of β-WO3 thin films deposited by reactive RF magnetron sputtering. Materials 10(2), 200 (2017). https://doi.org/10.3390/ma10020200

    Article  ADS  Google Scholar 

  24. H. Asady, E.T. Salim, R.A. Ismail, Some critical issues on the structural properties of Nb2O5 nanostructure film deposited by hydrothermal technique. AIP Conf. Proc. 2213(1), 020183 (2020)

    Article  Google Scholar 

  25. Y.S. Zou et al., Structural and optical properties of WO films deposited by pulsed laser deposition. J. Alloys Coumpounds 583, 465–470 (2014). https://doi.org/10.1016/j.jallcom.2013.08.166

    Article  Google Scholar 

  26. M.A. Fakhri, Annealing effects on opto-electronic properties of Ag2O films growth using thermal evaporation techniques. Int. J. Nanoelectron. Mater. 9(1), 93–102 (2016)

    Google Scholar 

  27. S. Li, Z. Yao, J. Zhou, R. Zhang, H. Shen, Fabrication and characterization of WO 3 thin films on silicon surface by thermal evaporation. Mater. Lett. 195, 213–216 (2017). https://doi.org/10.1016/j.matlet.2017.02.078

    Article  Google Scholar 

  28. M.A. Fakhri, Y. Al-Douri, U. Hashim, Fabricated optical strip waveguide of nanophotonics lithium niobate. IEEE Photonics J. 8(2), 4500410 (2016). https://doi.org/10.1109/JPHOT.2016.2531583

    Article  Google Scholar 

  29. S. Ghosh, S.S. Acharyya, R. Singh, P. Gupta, R. Bal, Fabrication of Ag/WO 3 nanobars for baeyer–villiger oxidation using hydrogen peroxide. CATCOM 72, 33–37 (2015). https://doi.org/10.1016/j.catcom.2015.09.001

    Article  Google Scholar 

  30. F.A. Mohammed, E.T. Salim, A.I. Hassan, M.H.A. Wahid, Effect of precursor concentration on the structural, optical, and electrical properties of WO3 thin films prepared by spray pyrolysis. J. Appl. Sci. Nanotechnol. 2(4), 91–105 (2022)

    Article  Google Scholar 

  31. C. Hou et al., An effective route for growth of WO 3/BiVO 4 heterojunction thin films with enhanced photoelectrochemical performance. J. Ind. Eng. Chem. 104, 146–154 (2021). https://doi.org/10.1016/j.jiec.2021.08.018

    Article  Google Scholar 

  32. A.D. Faisal, R.A. Ismail, W.K. Khalef, E.T. Salim, Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications. Opt. Quant. Electron. 52, 212 (2020)

    Article  Google Scholar 

  33. K. Mouratis et al., WO 3 films grown by spray pyrolysis for smart windows applications. Coatings 12(4), 545 (2022). https://doi.org/10.3390/coatings12040545

    Article  Google Scholar 

  34. M.A. Fakhri, F.G. Khalid, E.T. Salim, Influence of annealing temperatures on Nb2O5nanostructures prepared using pulsed laser deposition method. J. Phys. Conf. Ser. 1795, 012063 (2021)

    Article  Google Scholar 

  35. R.M.J. Chandrasekaran, S.M.P. Vivek, V.B.P. Balraju, Jet nebulizer sprayed–WO 3–nanoplate arrays for high–photoresponsivity based metal–insulator–semiconductor structured Schottky barrier Diodes. J. Inorg. Organomet. Polym. Mater. 30, 731–748 (2020). https://doi.org/10.1007/s10904-019-01285-y

    Article  Google Scholar 

  36. M.A. Fakhri, N.H. Numan, Q.Q. Mohammed, M.S. Abdulla, O.S. Hassan, S.A. Abduljabar, A.A. Ahmed, Responsivity and response time of nano silver oxide on silicon heterojunction detector. Int. J. Nanoelectron. Mater. 11(Special Issue BOND21), 65–72 (2018)

    Google Scholar 

  37. V.V. Ganbavle, J.H. Kim, K.Y. Rajpure, Effect of substrate temperature on the properties of sprayed WO3 thin films using peroxotungstic acid and ammonium tungstate: a comparative study. J. Electron. Mater. 44(3), 874–885 (2015). https://doi.org/10.1007/s11664-014-3618-z

    Article  ADS  Google Scholar 

  38. M.A. Fakhri, E.T. Salim, A.W. Abdulwahhab, U. Hashim, M.A. Minshid, Z.T. Salim, The effect of annealing temperature on optical and photolumence properties of LiNbO 3. Surf. Rev. Lett. 26(10), 1950068 (2019). https://doi.org/10.1142/S0218625X19500689

    Article  ADS  Google Scholar 

  39. E.T. Salim, M.T. Awayiz, R.O. Mahdi, Tea concentration effect on the optical, structural, and surface roughness of Ag2O thin films. Dig. J. Nanomater. Biostruct. 14(4), 1151–1159 (2019)

    Google Scholar 

  40. A.S. Ibraheam, J.M. Rzaij, M.A. Fakhri, A.W. Abdulwahhab, Structural optical and electrical investigations of Al:ZnO nanostructures as UV photodetector synthesized by spray pyrolysis technique. Mater. Res. Express 6(5), 1055916 (2019)

    Article  ADS  Google Scholar 

  41. J.P. Kollender, A.I. Mardare, A.W. Hassel, Effect of different cobalt concentrations on tungsten trioxide photoelectrodes for use in solar water oxidation. J. Electrochem. Soc. 162(4), H187–H193 (2015). https://doi.org/10.1149/2.0711503jes

    Article  Google Scholar 

  42. M.S. Alwazny, R.A. Ismail, E.T. Salim, Optical properties of lithium niobate nanoparticles prepared by laser ablation in different surfactant solutions. J. Appl. Sci. Nanotechnol. 3(1), 42–50 (2023)

    Article  Google Scholar 

  43. T.D. Dongale, S.V. Mohite, A.A. Bagade, R.K. Kamat, K.Y. Rajpure, Bio-mimicking the synaptic weights, analog memory, and forgetting effect using spray deposited WO 3 memristor device. Microelectron. Eng. 183–184, 12–18 (2017). https://doi.org/10.1016/j.mee.2017.10.003

    Article  Google Scholar 

  44. E.T. Salim, I.R. Agool, M.A. Muhsien, Construction of SnO2/SiO2/Si heterojunction and its lineup using I-V and C-V measurements. Int. J. Mod. Phys. B 25(29), 3863–3869 (2011)

    Article  ADS  Google Scholar 

  45. Z. Yuan et al., Highly sensitive ammonia sensors based on Ag-Decorated WO3 Nanorods. IEEE Trans. Nanotechnol. 17(6), 1252–1258 (2018). https://doi.org/10.1109/TNANO.2018.2871675

    Article  ADS  Google Scholar 

  46. M.A. Fakhri, M.J. AbdulRazzaq, H.D. Jabbar, E.T. Salim, F.H. Alsultany, U. Hashim, Fabrication of UV photodetector based on GaN/Psi heterojunction using pulse laser deposition method: effect of different laser wavelengths. Opt. Mater. 137, 113593 (2023)

    Article  Google Scholar 

  47. R. Rajkumari, N.K. Singh, Ag nanoparticle-decorated wo3nanowires for nonvolatile memory. ACS Appl. Nano Mater. 3(12), 12087–12094 (2020). https://doi.org/10.1021/acsanm.0c02584

    Article  Google Scholar 

  48. E.T. Salim, R.A. Ismail, H.T. Halbos, Growth of Nb2O5 film using hydrothermal method: effect of Nb concentration on physical properties. Mater. Res. Express 6(11), 116429 (2019)

    Article  ADS  Google Scholar 

  49. M. Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Investigation of microstructural and optical and dc electrical properties of spin coated Al: WO 3 thin films for n-Al: WO 3/p-Si heterojunction diodes Optik Investigation of microstructural optical and dc electrical properties of spin coated Al: WO”. Opt. Int. J. Light Electron Opt. 145, 169–180 (2017). https://doi.org/10.1016/j.ijleo.2017.07.049

    Article  Google Scholar 

  50. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, A.W. Abdulwahhab, U. Hashim, Z.T. Salim, Efficiency enhancement of optical strip waveguide by the effect of heat treatment. Optik 180, 768–774 (2019). https://doi.org/10.1016/j.ijleo.2018.12.006

    Article  ADS  Google Scholar 

  51. M.K. Abood, M.H.A. Wahid, J.A. Saimon, E.T. Salim, Physical properties of Nb2O5 thin films prepared at 12M ammonium concentration. Int. J. Nanoelectron. Mater. 11(Special Issue BOND21), 237–244 (2018)

    Google Scholar 

  52. M.M. Hassan, M.A. Fakhri, S.A. Adnan, 2-D of nano photonic silicon fabrication for sensing application. Dig. J. Nanomater. Biostruct. 14(4), 873–878 (2019)

    Google Scholar 

  53. C. Kamble, M. Panse, A. Nimbalkar, Ag decorated WO3 sensor for the detection of sub-ppm level NO2 concentration in air. Mater. Sci. Semicond. Process. 103(2), 104613 (2019). https://doi.org/10.1016/j.mssp.2019.104613

    Article  Google Scholar 

  54. D.A. Mohammed, A. Kadhim, M.A. Fakhri, The enhancement of the corrosion protection of 304 stainless steel using Al2O3films by PLD method. AIP Conf. Proc. 2045(1), 020014 (2018). https://doi.org/10.1063/1.5080827

    Article  Google Scholar 

  55. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes. J. Mater. Sci. Mater. Electron. 29(4), 2618–2627 (2018). https://doi.org/10.1007/s10854-017-8187-5

    Article  Google Scholar 

  56. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Electrical conductivity inversion for Nb2O5 nanostructure thin films at different temperatures. Mater. Res. Express 6(12), 126459 (2019). https://doi.org/10.1088/2053-1591/ab771c

    Article  Google Scholar 

  57. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, U. Hashim, Z.T. Salim, R.A. Ismail, Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration. J. Mater. Sci. Mater. Electron. 28(16), 11813–11822 (2017). https://doi.org/10.1007/s10854-017-6989-0

    Article  Google Scholar 

  58. K. Shanmugasundaram, P. Thirunavukkarasu, M. Ramamurthy, M. Balaji, J. Chandrasekaran, Growth and characterization of jet nebulizer spray deposited n-type WO 3 thin films for junction. Orient. J. Chem. 33(5), 2484–2491 (2017)

    Article  Google Scholar 

  59. S.M. Taleb, M.A. Fakhri, S.A. Adnan, Physical investigations of nanophotonic LiNbO3 films for photonic applications. J. Ovonic Res. 15(4), 261–269 (2019)

    Google Scholar 

  60. E.T. Salim, Y. Al-Douri, M.S. Al Wazny, M.A. Fakhri, Optical properties of cauliflower-like Bi2O3nanostructures by reactive pulsed laser deposition (PLD) technique. Sol. Energy 107, 523–529 (2014). https://doi.org/10.1016/j.solener.2014.05.020

    Article  ADS  Google Scholar 

  61. C. Yan, R. Wang, Y. Wang, X. Wang, G. Bai, Effects of ion irradiation on microstructure and properties of zirconium alloys d A review. Nucl. Eng. Technol. 47(3), 323–331 (2015). https://doi.org/10.1016/j.net.2014.12.015

    Article  Google Scholar 

  62. O.A. Abdulrazzaq, E.T. Saleem, Inexpensive near-IR photodetector. Turk. J. Phys. 30, 35–39 (2006)

    Google Scholar 

  63. R. Mukherjee, C.S. Prajapati, P.P. Sahay, Tin-incorporation induced changes in the microstructural, optical, and electrical behavior of tungsten oxide nanocrystalline thin films grown via spray pyrolysis. J. Therm. Spray Technol. 23(8), 1445–1455 (2014). https://doi.org/10.1007/s11666-014-0134-x

    Article  ADS  Google Scholar 

  64. M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, Preparation and charactrization of photonic LiNbO3generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci. Mater. Electron. 27(12), 13105–13112 (2016). https://doi.org/10.1007/s10854-016-5455-8

    Article  Google Scholar 

  65. B.A. Badr, Q.Q. Mohammed, N.H. Numan, M.A. Fakhri, A.W. Abdul Wahhab, Substrate temperature effects on optical properties and constants of ZnO. Int. J. Nanoelectron. Mater. 12(3), 283–290 (2019)

    Google Scholar 

  66. S.A. Naayi, A.I. Hassan, E.T. Salim, FTIR and X-ray diffraction analysis of Al2O3nanostructured thin film prepared at low temperature using spray pyrolysis method. Int. J. Nanoelectron. Mater. 11(Special Issue BOND21), 1–6 (2018)

    Google Scholar 

  67. R.A. Abumousa, U. Baig, M.A. Gondal, M.S. Alsalhi, Photo-catalytic killing of HeLa cancer cells using facile synthesized pure and Ag loaded WO 3 nanoparticles. Sci. Rep. 8, 15224 (2018). https://doi.org/10.1038/s41598-018-33434-7

    Article  ADS  Google Scholar 

  68. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysis of nanophotonic LINBO3. ARPN J. Eng. Appl. Sci. 11(8), 4974–4978 (2016)

    Google Scholar 

  69. M. Raj, C. Joseph, M. Subramanian, V. Perumalsamy, V. Elayappan, Superior photoresponse MIS Schottky barrier diodes with nanoporous:Sn-WO3 films for ultraviolet photodetector application. New J. Chem. 44(19), 7708–7718 (2020). https://doi.org/10.1039/d0nj00101e

    Article  Google Scholar 

  70. B.A. Badr, N.H. Numan, F.G. Khalid, M.A. Fakhri, A.W. Abdulwahhab, Effetcts of substrate temperatures on optical properties and constants of ZnO prepared by PLD. J. Ovonic Res. 15(2), 127–133 (2019)

    Google Scholar 

  71. M.A. Fakhri, E.T. Salim, A.W. Abdulwahhab, U. Hashim, Z.T. Salim, Optical properties of micro and nano LiNbO3thin film prepared by spin coating. Opt. Laser Technol. 103, 226–232 (2018). https://doi.org/10.1016/j.optlastec.2018.01.040

    Article  ADS  Google Scholar 

  72. E.T. Salim, M.A. Fakhri, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic devises fabrication. Int. J. Nanoelectron. Mater. 6(2), 121–128 (2013)

    Google Scholar 

  73. M.A. Fakhri, A.W. Abdulwahhab, S.M. Kadhim, M.S. Alwazni, S.A. Adnan, Thermal oxidation effects on physical properties of CuO 2 thin films for optoelectronic application. Mater. Res. Express 6(2), 026429–026516 (2018)

    Article  ADS  Google Scholar 

  74. R. Suresh, V. Ponnuswamy, and R. Mariappan, Incorporation of Al 3 + on the rectification properties of ADC thin films, (2014), https://doi.org/10.1016/j.ceramint.2014.10.152.

  75. E.T. Salim, Rapid thermal oxidation for silicon nanocrystal based solar cell. Int. J. Nanoelectron. Mater. 5(2), 95–100 (2012)

    Google Scholar 

  76. M. Raja, J. Chandrasekaran, M. Balaji, Impact of annealing treatment on structural and dc electrical properties of spin coated tungsten trioxide thin fi lms for Si/WO 3/Ag junction diode. Mater. Sci. Semicond. Process. 56, 145–154 (2016). https://doi.org/10.1016/j.mssp.2016.08.007

    Article  Google Scholar 

  77. E.T. Salim, Optoelectronic properties of Fe2O3/Si heterojunction prepared by rapid thermal oxidation method. Indian J. Phys. 87(4), 349–353 (2013). https://doi.org/10.1007/s12648-012-0229-5

    Article  ADS  Google Scholar 

  78. K. Sugiyama et al., Dependence of indium – tin – oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. J. Appl. Phys. (2000). https://doi.org/10.1063/1.371859

    Article  Google Scholar 

  79. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, U. Hashim, Z.T. Salim, Optical investigations and optical constant of nano lithium niobate deposited by spray pyrolysis technique with injection of Li2CO3and Nb2O5 as raw materials. J. Mater. Sci. Mater. Electron. 29(11), 9200–9208 (2018)

    Article  Google Scholar 

  80. E.T. Salim, M.S. Al-Wazny, M.A. Fakhri, Glancing angle reactive pulsed laser deposition (GRPLD) for Bi 2O3/Si heterostructure. Mod. Phys. Lett. B 27(16), 1350122 (2013). https://doi.org/10.1142/S0217984913501224

    Article  ADS  Google Scholar 

  81. B.A. Badr, N.H. Numan, F.G. Khalid, M.A. Fakhri, A.W. Abdulwahhab, All optical investigations of copper oxide for detection devices. J. Ovonic Res. 15(1), 53–59 (2019)

    Google Scholar 

  82. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis. Opt. Quantum Electron. 52, 463 (2020). https://doi.org/10.1007/s11082-020-02588-y

    Article  Google Scholar 

  83. C.H. Lin, C.W. Liu, Metal-insulator-semiconductor photodetectors. Sensors 10, 8797–8826 (2010). https://doi.org/10.3390/s101008797

    Article  ADS  Google Scholar 

  84. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, D. Prakash, K.D. Verma, Optical investigation of nanophotonic lithium niobate-based optical waveguide. Appl. Phys. B: Lasers Opt. 121(1), 107–116 (2015). https://doi.org/10.1007/s00340-015-6206-x

    Article  ADS  Google Scholar 

  85. K. K. N. Simon M. Sze, “Physics of Semiconductor Devices-Wiley-Interscience (2006).” .

  86. M.K. Abood, M.H.A. Wahid, E.T. Salim, J.A. Saimon, Niobium Pentoxide thin films employ simple colloidal suspension at low preparation temperature. Eur. Phys. J. Conf. 162(12), 01058 (2017). https://doi.org/10.1051/epjconf/201716201058

    Article  Google Scholar 

  87. M.S. AlWazny, E.T. Salim, B.A. Bader, M.A. Fakhry, Synthesis of Bi2O3 films, studying their optical, structural, and surface roughness properties. IOP Conf. Series Mater. Sci. Eng. 454(1), 012160 (2018). https://doi.org/10.1088/1757-899X/454/1/012160

    Article  Google Scholar 

  88. M.A. Fakhri, N.H. Numan, Q.Q. Mohammed, M.S. Abdulla, O.S. Hassan, S.A. Abduljabar, A.A. Ahmed, Responsivity and response time of nano silver oxide on silicon heterojunction detector. Int. J. Nanoelectron. Mater. 11(Special Issue 1), 109–114 (2018)

    Google Scholar 

  89. A.G. Imer, A. Tombak, A. Korkut, Electrical and photoelectrical characteristic investigation of a new generation photodiode based on bromothymol blue dye. J. Phys. Conf. Ser. 707, 012012 (2016)

  90. M. Abdul Muhsien, E.T. Salim, Y. Al-Douri, A.F. Sale, I.R. Agool, Appl. Phys. A 120(2), 725–730 (2015). https://doi.org/10.1007/s00339-015-9249-2

    Article  ADS  Google Scholar 

  91. Y. Al-Douri, M.A. Fakhri, N. Badi, C.H. Voon, Effect of stirring time on the structural parameters of nanophotonic LiNbO3 deposited by spin-coating technique. Optik 156, 886–890 (2018). https://doi.org/10.1016/j.ijleo.2017.12.059

    Article  ADS  Google Scholar 

  92. M.A.M. Hassan, M.F.H. Al-Kadhemy, E.T. Salem, Effect irradiation time of Gamma ray on MSISM (Au/SnO2/SiO2/Si/Al) devices using theoretical modeling. Int. J. Nanoelectron. Mater. 8(2), 69–82 (2015)

    Google Scholar 

  93. Y. Al-Douri, M.A. Fakhri, A. Bouhemadou, R. Khenata, M. Ameri, Stirrer time effect on optical properties of nanophotonic LiNbO3. Mater. Chem. Phys. 203, 243–248 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.024

    Article  Google Scholar 

  94. M.A. Muhsien, E.T. Salem, I.R. Agool, H.H. Hamdan, Gas sensing of Au/n-SnO2/p-PSi/c-Si heterojunction devices prepared by rapid thermal oxidation. Appl. Nanosci. 4, 719–732 (2014)

    Article  ADS  Google Scholar 

  95. R.A. Ismail, A. Majeed, E. Al Samarai, W.M. Mohammed, Preparation of n-ZnO/p-Si heterojunction photodetector via rapid thermal oxidation technique: effect of oxidation time. Appl. Phys. A 124, 527 (2018). https://doi.org/10.1007/s00339-018-1946-1

    Article  ADS  Google Scholar 

  96. K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor : using the mott–schottky equation. J. Chem. Educ. 84(4), 685–688 (2007). https://doi.org/10.1021/ed084p685

    Article  Google Scholar 

  97. M.A. Fakhri, Y. Al-Douri, A. Bouhemadou, M. Ameri, Structural and optical properties of nanophotonic LiNbO 3 under stirrer time effect. J. Opt. Commun. 39(3), 297–306 (2017). https://doi.org/10.1515/joc-2016-0159

    Article  Google Scholar 

  98. M.A. Muhsien, E.T. Salim, I.R. Agool, Preparation and characterization of (Au/n-Sn O2/Si O2/Si/Al) MIS device for optoelectronic application. Int. J. Opt. 756402, 9 (2013). https://doi.org/10.1155/2013/756402

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the department of laser engineering and electro-optic/University of Technology for the logistic support of this work.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

Evan and Azhar conceived of the presented idea. Evan and Azhar supervised the finding of this work. All authors discussed the results and contributed equally to the final manuscript. Farhan and Makram conducted the experiments. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding authors

Correspondence to Evan T. Salim or Makram A. Fakhri.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, E.T., Hassan, A.I., Mohamed, F.A. et al. Photoactivation of Ag ions for improved WO3-based optoelectronic devices. J Opt (2024). https://doi.org/10.1007/s12596-023-01596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01596-x

Keywords

Navigation